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1. D200 BUILDING BLOCKS 

The. hasic a r i thmet ic  unit element is a n  8 bit parallel  adder / subt rac tor  and 
accunlulator r eg i s t e r  section. The 42 pin configuration of the A chip, a s  i l lustrate  
i n  Figure 1. provides for two independent parallel  input banks of eight bits  each. 
These two banks may be added o r  subtracted,  and the resu l t  is available on the 
s output bank one bit t ime Inter. The A chip, as a l l  other basic e lements  of the B200 
family, is presently designed to operate at  a bit rate of one megahertz.  

Another mode of oper:ition for the A chip enables one of the input banks to be 
added to the x bit internal r eg i s t e r  with the resu l t  replacing the contents of the 8 bit 
intern:il r eg i s t e r  and :ilso :ippe:iring on the output bank. A l is t  of the total modes of 
operntion for  the A chip :ippe:irs in the figure. \\‘hen the two input banks are being 
added together and the internal register re ta ins  its values the A chip can be used for 
indexing i n  a general  purpose computer arit metic section. During this indexing 
operation, the accumulator remains  in the H‘ flip flops of the A chips. 

\Yhcn :in input bank is added o r  subtracted from the internal register W, this 
is fo r  the purposes of adding o r  subtracting to  the accumulator. 

The c a r r y  inputs and outputs i l lustrated in the figure enable a maxiinurn of four 
A chips to be interconnected to  mechanize a maximum 32 bit a r i thmet ic  unit  whose 
r eg i s t e r  to r eg i s t e r  add t i h e  is 1 inicrosecond. 
ari thmetic u n i t  and accumulator for the 16 bit D200 computers.  T h r e e  A chips are  
used for the 24 bit D200 computers.  A l l  add t imes  for the various bit lengths are one 

Two A chips a r e  used for the 16 bit 
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$ BIT INTERNAL 
REGISTER (W) 

- -  

B INPUT BANK A mpu-r BANK 

CONTROL 
STATES A MAXIMUM OF 4 I C ' s  MAY H E  

U S E D  TO YIELD A 2 2  BIT 
ADDER/SUBTR ACTOR 

1 BIT T I M E  DELAY FROM 
INPUT TO OUTPUT 

Figure 1 .  "A" Chill 
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Wcgislcrs. Interface.. and ent. - The 13 Chip 

With the exception o 
p and the previously 
e variety of arithmetic p 

I3 chip se rves  three important 
computer oyertitio 
X chip. :IS discus 
arithiiietic ~ P ' O C ~ S S O ~ ,  this i 
(3) the extensive l ist  of Ed001 
iiiechaiiized in the B chip. 

Thc 13 chip (Figurc 2) is a 4 bit widc e ) I3 chips a r c  used 
e accumulator :in A chip. 

arithmetic. and four B chip 
interface. niid h o l e a n  functions shown in Table I. 

In a 16 bit computer W O  A chips w 
ents for registers.  

Ten registers are provided in each 1 bits wide, the 
therefore. contains the equivalent of 40 fl 
described below. The reg is te rs  a r e  orga ing groupings: 

ic for the operations 

1. A lower accumulator reg is te r  some 
accumulator reg is te r  which houses 
product resulting from a multiply operation o r  the remainder resulting 
from the divide operation. 

es known as the extension to  an 
l e s s e r  s ~ g n ~ ~ i ~ a n t  half of the 

2. A regis te r  for holding the in 
for u s e  in modifyin 

ber selected by the instruction word 

3. A buffer reg is te r  for housing the metic operations. and 
serving as a time and s to ra  
memory. 

Fit hllleti c proces 

4. A general register file of sevenre 
the design of the 

computers. Manmy uses 

5- 3 



INTERNAL 
REGISTERS 

B B  AA 
Control Control 
States Operation States Operation 

1 BB - BB 1 AX -AX, AA 
2 AX- BB 2 BB-AX, AA 
3 -  D - B B  3 D-AX, AA 
4 D -BB 4 &I -AX, AA 
5 h1 -,. BB 5 2AA -AX, AA 
ti D - M - B B  6 1/2AA - AX. AA 
7 AX &I -BB 7 1/4AA -AX, AA 
8 BB * M-= BB 8 1/16AAe AX. AA 
9 D + hi -BB 9 
10 BB + &I -AB 10 
11 A X .  D + A X *  &I-BB 11 Contents of AA 
12 AX - BB + A T  M-BB 12 AX -AX, AA - AA 
13 ZERO - BB 13 
14 D + BB - BB 14 

16 D e B B - B B  16 15 D * BB-BB 15 Contents of AA 

ME 
IN 

J Reg i s t e r  
Control 
States  Operation 

1 None 
2 BB- JT  
3 BB- JU 
4 BB- J V  
5 BB - JW 
6 BB- J X  
7 B B - J Y  
8 BB - J Z  
9 None 
10 D - J T  
11 D--JU 
12 D - J V  
13 D --JW 
14 D + J X  
15 D - J Y  
16 D-JZ 

Table 1, Independent Control States for BIOS Type r f g l t  IC 

Tag Control States 

1 
2 
3 
4 
5 
G 
7 
8 

Operation: Only Performed fo r  States 9 - 11 and 13 - 16 of AA Controls 

Value placed in AX is a l so  placed in AA 
J T  -AA 
JU - A A  
J V  -AA 
J W  -* .%A 
J X  -AA 
J Y  - A A  
J Z  --AA 

FOR J REGISTER CONTROL STATES 2 - 8 AND 10 - 16 THE 
APPROPRIATE VALUE, BB OR D, IS PLACED IN AA (i. e . ,  
AFTER THE OPERATION, AA AND THE SELECTED INDEX REGISTER 
WILL BE EQUAL) 

5- 4 



The Steering Logic Element - The ST Chip 

The ST chip. Figure 5 .  is a three  to one. 8 bit byte multiplexer which is used 
extensively within the B200 family. 
one bank of 8 bit output lines. The function of the ST chip i s  to select one of the 
input banks according to  the signals on i ts  control l ines and present  the information 
on the output bank. A crucial  feature in the operation of the ST chip i s  i ts  s 
i s  intended to operate between bit t imes,  Information processed, say,  in a 
be s teered through an ST chip and be available for an operation in an A chip at the next 
bit t ime, The ST chip is designed to perform i ts  function in 200 nanoseconds. This  
s teer ing logic element is basic to the modularity sch the D200 family of 
computers and enables a wide variety of processor  c 
basic ar i thmetic  processor  configurations to mechan 
accumulator (the B chip has shifting paths built into itlo 

I t  includes three banks of 8 bit input lines an 

Basic Counter Element - The P Chip 

The P chip is a basic 16 bit up/down counter logic element. It Aae a wide 
variety of uses reflected in i t s  mode of operations in Figure 4. It can be used 
merely as a 16 bit regis ter .  nternal shifting paths are inco 
so  it can be used a s  a serial-to-parallel and parallel-to-ses 
function is a s  an  up/down counter. and because of this it is 
counter (hence. the name P chip) in a l l  ari thmetic processo 
family of computers. It is used in many of the r ea l  t ime e l  
associated with the various computer I/Q's and processors .  as well as control, 
address ,  and conversion reg is te rs  in I/Q processors .  

Other Chips 

The PI chip mechanizes eight parallel  and i ram interrupt 
es control functions. channels. It is an example of a modular e lem 

It is a standard control e lement .  a widely use 
the operation of the ent i re  processor .  

A goal in the D200 family of coinputers is  to 
IC's that a r e  independent of the bit length. T 
two bit-at-a-time multiply and other basic a r  
processors ,  while another control type (CAI) may 
multiply for 16, 24. or  32 bit processors .  

Each computer in the D200 family will have at 1 
This \vi11 house. the particular instruction set itself. 

computer 's  application. 

The R chip. whose design has been corn 
purpose modular element, The 1% chip can he 
processor  for a square root instruction, A 16 9 

a 24 bit processor  three W chips; and a 32 bit 

5- 5 
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Figure 3. ST Chip 

CONTROLS 

CONTROL 
STATES OPERATlON 
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2 

3 

4 

5 
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7 

8 - 

MAINTAIN VALUE (P - P) 
RIGHT SHIFT p 
LEFT smFT p 
LOAD INPUTS IN P 
DECREMENT ( P  - 1 - P) 
INCREMENT (P + 1 -P) 

LOAD INPUTS MINUS 1 IN P 
LOAD INPUTS PLUS 1 IN P 

INPUT BlTS FOR SHIFTING ARE 
RIGHT & LEFT INPUT BITS RESPECTIVELY 

Figure 4, P Chip 



2, D200 COMPUTERS 

The u s e  of the MOS l a rge  sca le  building blocks to implement a variety of 
ari thmetic and control centers  is described by the next series of figures. 
a 16 bit ari thmetic center  is shown in Figure 5. It consists of Ewo &bit slices with 

F i r s t ,  

slice containing one A device, two B devices, and four ST devices. Next, 
re 6 shows a complete ari thmetic and control center. Two additional ST 

devices have been added to interface with the memory. A P device is added for use 
a s  a program counter. A PI device is added for eight channels of program interrupt. 
The CL device is added for control of length operations and finally C1 has been added 
to innpiemcent a minimal instruction se t  in the 16 bit ari thmetic center.  Figure 7 
shows an extended arithmetic an control center  where two R devices have been added 
for  a built-in square  root. Addi ces are added for  increasing the 
interrupt capability and C1 has be by C2 and C3 for an extended instruetion 
repertoire .  



aLBc- ADDRESS TO MEMORY - 
PROGRAM COUNTER 

8 CHANNELS 
PROGRAM INTERRUPT 

CONTROL FOR 
M N G  OPERATIONS 

MICROPROGRAM AREA 

1 DEVICE FOR MINIMAL PROCESSOR I I 
c-r’ DATA TO MEMORY / 
DATA 
FROM 
MEMORY 

DRESS T O  MEMORY w 

PROGRAM COUNTER 

8 CHANNELS 
PROGRAM INTERRUPT 

ADDITIONAL 
PROGRAM 
INTERRUPT 
CHANNELS 

CONTROL FOR 
IDNG OPERATIONS 

MICROPROGHAM AREA 

1 DEVICE FOR MINIMAL PROCESSOR 
2 DEVICES FOR MORE EXTENSIVE 

DATA 
PROM 

INSTRUCTION S E T  

Control Section 



e next set  of f 
length. Figure 8 is a 
shows the addition of an 8-bit 
center while 611 has been rep 

e compatible w 
gram interrupt 

devices.  Finally, Figure 10 

arithmetic and control center. 
uired being 66 a 

CONTROL 
LONG OPE s 

* 
** 
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4 B 

*DATA FROM MEMORY 
**DATA TO MEMORY 

Figure 9, 24 Bit A and C 

Figure BO. 32 Bit A and C 
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1,O INTRODUSTION MYD 'SUhiYARY (Continued) 

a t a  describing. thp e f f e c t  scveral pma:xtf 'rb 
cy of t h e  o r b i t  detcriilinatioil p r w e s s o  i r  

minal set  of environmental and mechsn i za t ion  paymete r s  was 
men and v a r i a t i o n s  made i n  t hese  p a m e t e r s  t o  determine t h e  

n naviga t iona l  accusxcl-, Thf? o r b i t  assumxl 
c i r c u l a r  with an a l t i t u d e  of 270 iin and an i i lcl inatiorl  of  

although t h i s  l a t t e r  p a r m e t e r  is superf luous s ince  t v m  
y dynamics with an inverse  square c e n t r a l  force f i c ld  LWC 

assumed (obla teness  and higher  order  g r a v i t y  terms 3s well a s  
atmospheric drag were neglected)  e 
var ied  were t h e  e r r o r  i n  t h e  apparent horizon, the c o r r e l s t i c n  
d i s t a n c e  cons tan t  for t h e  measurement e r r o r s p  the  nuTbcr of and 
time between horizon measurcinents, t h e  azimuth zngler; (mc:,lsured 
fn a l o c a l l y  l e v e l  coordinate  system) a t  which thi: aeas l i renwts  

- 
The parameters t h a t  v m t ?  

re made, and t h e  i n i t i a l  pos i t i on  and ve loc i ty  errors. 

A l l  of t h e  r e s u l t s  reported were obt3ined using thc linea;.imd 
covariance ana lys i s  po r t ions  of t h e  p~ogrrun becailbe o f  t h e  
reduct ion  i n  reoui red  runninq tjme. 

tion, 
made i n  one case t o  v e r i f y  the  results of t h e  l lneclrircd a;?,.!ytjs. 
Good agreement was obtained. 

A s ing le  fbrite Carlo s i n w  

Comparisons using up t o  100 t.!onte Carlo s i w l a t i o n s  v m ~ e  
a t ion  vias made with every covarismncc r u n  fo r  lii\Ttc.-i w ? j r 5 c z  

The d a t a  o b t a h e d  shows a s i g n i f i c a n t  r e l a t i o n s h i p  bet. :..rei! .:ha 
horizon sensoq: field-of-view, and the  azinuth angles a t  which 
measwreinents are made, and the nav iga t im  errorse because of 
t h e  l i n e a r i z e d  e r ro i  ana lys i s ,  t h e  navigat ion erroys &re a 
l i n e a r  funct ion of t h e  only error sozrcc considered, t h e  hor i zcn 
uncer ta in ty ,  
i n t e r e s t i n g  e f f e c t  on t h e  r e s u l t i n g  navigat ion ac.c~ir;tcy. 
zon ta l  errors (CFOSS t r ack  and dovm range)  tend tii ciccz:e.clsc w i t h  
increasing c o r r e l a t i o n  d i s t ance  constant s o  The! oFposite i s  t x e  
with veTticaL errors up t o  t h e  point. vAirc t h e  "bi2s" exrm 
caused by t h e  co r re l a t ion  can be estI.rna-ted and corrected. For 
co r re l a t ion  d i s t m c e  constants  of less ttxm ~ O P Q  r:ci9 (act.:lal 
horizon c o r r e l a t i o n  dist;inr;e cons tan ts  a re  estirn3t.cd t o  be on 
t h e  order  of  2500 ern, see  re ference  1) t h e  e r r m  ?esult.s, for 
t h e  ntort p a r t ,  m e  t*,ithin 20:': of t h o x  for J white noise measure- 
ment error (zcso cor re l a t ion  d is tance)  * 

Varying the  co r re l a t ion  dis.tance constant  hi?2 m 
IIorI- 
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l inesrized covaricmc matrix approach was used Cor tho ~ ~ r o r  
analysis with O?t i ! i i ; i l  estimation or Kalman filtering used to 
deternine the corrr cI.ion or weighting coefficients. A bxief 
description of the particular form of the equations used 

et X ,  and Xc le state vectors representing the actual 
state (3 position and 3 velocity corqonents) and the 
computed s t a t e  o f  the spacecraft respectively. 
navigation errors are then 

Tho 

Let yo and y, be the observed and coxputed values of the 
measurement ( angle fson star to horizon) respectively. 
Then 

yc = f(Z& . .. 

1 ’, 

4 .  
42.2) 

- ?  42.3)  
‘ t  

is thc  error in ttfe .measureimnt. ’ 

Bated on the ncarurenent, ‘tho computed s t a t e  is corrected 
by the equation 

(2.4) 

a 

X l  = co*;..?utcd s t a t e  hcfore correction 
6, = best  estimate of correctfo~a based on rneasu 

. 
A 

and 
mputed rlcessurcn~@nt y,e 



2,o ( Continued) 

Subst i tut ing  from equation 2,5 into 2,4 g i v e s  the  equation 
for updating the comput.ed s t a t e  based on the wightjrig 
coefficients, B, and the observed and compcted me?surementst 

Using a Taylor series expansion of yo about xc and dropping 
a l l  second order and higher termcis 

If  ba, i s  ~ ISS\WCC~ t o  be zero mean and ancorrelated with any 
other variable ,  equation 2,8 can be reduced to 

(2.9) 
T T  T 

where Ck= E i s  the  covariance matrix of tho nieasure- 
Rten t err or  

c; = ( 1-EH)C; (I-n I.1 ) t H cq n 

Using Kalman optimal est imation and aqsuming 
ZBTO mean gaussian, the weighting coef ficfcn 
mined a t  

- a  
(2elO) 

Using this value of B, equation 2,9 can he ncduced t o  

c; t‘- { r-BF.I)C; (3,I.L) 
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The dynamics rjovwrIjng :.pacecraft motion were a c w w d  t o  he thc:e 
assoc ia ted  w i t h  a lv:o f,ody inverse q u a x e  c e n t r a l  f a r c e  f i e ld ,  
The r c w l t i r q  dif fr  r s n t i a l  oqiiations can he 5ntegratcd t o  propa- 
gate  t h e  spacecraf t  s t a t e  and covariance n a t r i x  from one t i i r c  Lo 
another l  An a n a l y t j c  so lu t ion  b a ~ e d  on Y,epleros €cjiJationS a s  
incorporalf .~! j i i  3 wt~Toiilinc* e n t i t l e d  TI!OX’ was iisc 8 hov.wcr 
a s t a t e  s e n s i t i v i t y  matrix) 
rou t ine  so t h a t  the  covariance matrix CE(tl)  a t  time t1 can be determined 

from the covariance rnatrix C c ( t o )  a t  time to by the 
expressf o n  

( t - t o )  was a l so  obtained Prom this 

(2.12) 
T 

C E ( t l )  = $0 J-t&(to) (t1- t0)  -t 9, 

where Q ,  is the covariance rmtr ix  of no ise  added dar ing  proixyat ion 
o f  thc s t a t e .  

The above equat ions i;sl;lime tlle rr,easuren.ent e r r o r  i s  vihitc noise  
with zero neon. I f  ins tcad  the  measurcmnt error  i s  correlated 
such t h a t  

s 4 
y, = f ( X C )  ;I 1 1  (2.14) 

A whcra? Q = best estjrnnte of t h e  measurerxmt c r ro r .  
white noisc, Q m i l d  l;e zeroo 

For zero mecn 
h Ubing (2.1 j, ( ~ 7 )  becones 

e -  

t h c  X a Q  x , ,  and !.: mat i c e s  are augn2nted 

then ( a *  l a )  becomes 
a -a -a  

yo - y, = .r: ( X a  - “ )  



SO (Cont,inucid) 

Equation 2,9 becomes 

(2, PG) a a a- aT aT = ( I -B  PJI ) CE ( I -B  1.1 ) 

-3 -a<- -a -ai- F xa - xc )(xa - x, ) 

quation 2,10 then becomes 
a- aF a a- aT -’ 

Ba = c, M f fi.! cc M ) 

aid using t h i s  value of Bap equations (2.6) and (2.16) becone 

(2,18) -a+ -a- a x, = Xc + B o r ,  - Yc) 
a a a- 

(2.19) 
a+ 

C6 = (I-E3 M 1 CE 

Defining an auannented transition rriatrix 

a -  - 

an augmented noise covariance n ia t r ix  

0 Q; = w 
Qu 

then equation (2,12) becomes 

( 2 2 0 )  

This augmented state approach (the neasurement. er ror  becoriies a 
component of the s t a t e  vector) for handling correlated noise (see 
reference 2) results in a system wherc. the rncasinment error is 
estimated at each mcazurcmcnt. t.im.-, and v;here t h c  white noise  now 
enters t h e  system only through t h e  dynamics, 

-6 



= E  

2 
+ %  -. 

The autocorrelation function of 
oupnnontirl fiinctinn and cnn he ~~~~v~~ as fnllnwsr 

as defined by (2.13) is an 



t o  d @ ~ @ s ~ ~ n ~  the  performance of the horizon sensor o r b i t  
i za t ion ,  a coq>ut,cr prosrain N ~ S  prepared t o  
ions def ined  by t h e  mechaniastion equations 
ion for cer ta i r ,  sets of system pa rme te r s .  
both a Ibineari7ed covariance e r r o r  ana lys i s  

the snboard o r b i t  deteernination process  v ~ r e  

Table 1 def ines  t h e  symbols 
pxogsammed. 
program s t r u c t u r e  and computa ions. 
used i n  f igu re  1, 

&?asurements are made with a f ixed  i n t e r v a l  of time (TRY wconds) 
between measurenents and a t  a sequence of azirnutli angles  ( a s  masured  
i n  the  l o c a l l y  l e v e l  coordinate  system) specff i e d  by input  parawters. 
The input  parameters P.L&BB .4LUB9 ALIX9 def ine  this sequencee The 
first azimlith angle i n  a sequence i s  X L D ,  the  second ALL13 + ALIIIC;, 
t h e  t h i r d  ALII3 3. (2) (ALIKS), etc,, dntil t h c  angle ALL9 i s  ex:;e~.ded. 
h;hen t h i s  happens, t h e  zequence is repeated, Th:ls, sppcifying t.he 
aaimuth angles. such t h a t  the  velcjclty vec tor  of the spacecraf t  i s  a t  
an azimuth anqle  of zero degrees ,  w i t h  a cloclr~tic~e orientatisi,, a 
sequence o f  naasurements t o  bo nzdc st ;nglrrs of 3f9 60; W: 129: 
N D U I ~  be spec i f i ed  by ALLB = 30: ALlR = 130; ALItJC = 30: 

Figuse 1 is  a f l  :v df33ram i l l u s t r a t i n g  the bas i c  

The spacecraf t  i s  cornputec! t o  be i n  a c i r c u l a r  o r b i t  as defincd hy 
input  parsmet ers specifying o r h i t  n l  aP t i tude ,  i nc l ina t ion  
i n i t i a l  longi tude and l a t i t u d e ,  

and 

The co r re l a t ion  coe f f i c i en t ,  as determined hy .thc t h i r d  block i n  
f igu re  l9 is a funct ion of t h e  d i s t a n c e  be twen -the poin ts  nn t h e  
horizon a t  vhich m@asure:ilents a r e  nnde (cal l tad the cor rc la t icn  
d is tance)  Because of t he  mejswrf2:I:erit serycnco and t h e  c r b i t a l  
motion, t h i s  co r re l a t ion  d i s t a n c e  changes f r O ’ r i  neasurernernt t o  
measurement arid has  a serpence of vslues cor re la ted  w i t h  Lhe 
sequence of  measurement azimuth angles,  .This rcsilrts i n  the need 
Lo compute a value of t h e  varisncti of t he  xjrii.Live hliite! noise  a t  
each measurement Lime Lo he  used as  an i n p i t  is t!le random nlmber 
generator ,  Tkesc computations coiild he a w i d e d  i f  t h e  measurements 
a r e  co r re l a t ed  with time, but  a d i s tance  c o r r e l z t i o n  is more repz e- 
aen ta t ive  ob horizon phenomenon. 
were disciissed i n  the  previous section, 

The o ther  equations o f  figure l 

Table 2 l is ts  t h e  required p r o g r m  J.np!it parmeters .  
forinat i s  used, Oiltprit consists e s s m t . i a l l y  of var ious CRT p l o t s  
and p r in t ed  tabula t ions  sf ~rror : ;  i n  t h e  coi:iputed spacecraft. sta te  
(both RMS from the covariance matrix and ac lua l  for  3 itbntc i‘crlo 
s imulat ion w i t h  a given random n\mbe?P sequoncc) 3s a funct ion of the 
measurements nxdo. 
out during R s i tnu la t ion  r u n  under cont ro l  o f  c e r t a i n  i npu t  px-aant&.ers. 

A namelis t  

Sonic other pa~*r.mct.ers can c u r r e n t l y  be printed 
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- Distance constant  OF exponential  co r re l a t ion  
funct ion 

D 

- ~ a r i a n c  

i x  vector  giving i n i t i a l  unce r t a in t i e s  i n  
c e c r a f t  s t a t e  

.,. A s i x  vector  giving the  i n i t i a l  s t a t e  of the 

- The computed &a%@ of the spacecraf t  including 

spacecraf t  ao 

- 
t he  est imate  of t h e  measurement e r r o r  

he actual state of t he  spacecraf t  

xc 

'a 
b 

NORMU (T) - A subroutine which generates  a random number with 
a zero  mean, gaussian probabi l i ty  dens i ty  function, 

standard devia t ion  eJ"& 

s- P 

s 

% 

D 

- The B'last ' '  ( -1) random measurement e r r o r  

- - 
covariance matrix of Xc - xa 

- The yec-tor from t h e  center  of t h e  eqr th  t o  the  poin t  
on the  horizon where the measuremcnt i s  made 

- The value o Ps for the  previous measurement 

- The computed pos i t i on  vector  ( f i r s t  t h ree  components 
of XC) 

- The vector  from t h e  spacecraf t  t o  the point  on the 
horizon wheIe t he  measurement is  msde 

- Radius of earth 

re I. a t  ion coef Pic i e n t  

- The distonce measured over t h e  surface of the  e a r t h  
between successfve poin ts  on t h e  ho r i zon  vhere 
measurements a r e  made 
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SYMBOI. DEFIHITIOIJ FOR FIGURE 1 

- Variance of white noise added t o  correlated 
measurement error 

- I'lhite noise error added t o  correlated measure- 
ment error 

- Dte asurement error 

- Observed value of measurement 

- Computed value of measurement 

- Augmented matrix relating measurement error t o  
state errors. 

- Identity matrix 

- Transition matrix relating state errors a t  time 
tl eo time t2" 

- Time of current measurenent 

- Time betwen measurcnients 



UlJ ITS 

dinutes  

4inutes 

nm 

fw 

fegrees  

nm 

iegrees  

learees 

legrees 

nm 

jegrees  

legrees 

iegrees  

e 

5 

500 

10 

50 
. *  

* 02 

270 

0 

0 

55 

2500 

0 

360 

90 

l 

Time bet vie en measurements 

Time of 3 a s t  measurement 

Standard devia t ion  of i n i t i a l  pos i t i on  
e r r o r  

Standard devia t ion  of i n i t i a l  ve loc i ty  
error 

Stsnchrd devia t ion  of measurepent error 

Alti tude of o r b i t  

I n i t i a l  longi tude of t r a j e c t o r y  

In$ t i a l  1 at.it i ide nf t r a j e c t o r y  

I n  c 1 i n a 1 i o r i  o f o r b i t  

C o m e  1 a t  ion d i s tance con st ailt 

Smallest  a;i;nuth angle f o r  measuren,ents 

Largest  a z i m t h  angle f o r  measurenx;nts 

h o u n t  azimiith angle is increxented for 
each rieasurement 

Idumber of Font@ Carlo runs t o  be nacle. 
If < 0, no runs are t o  be made. 

Blot coil trol  parameter* 
i f  < 0 ,  

Pr in t  cont ro l  parameters, :lo p r i n t  
out u n t i l  errd of run i f  Q 0. 

IJo CRT p l o t s  



The procpar?, when used f o r  more than one Monte Carlo run, has  a 
s l i g h t l y  d i f f e r e n t  s t r u c t u r e  rom t h a t  shovm i n  ~ i ~ u r @  le ~ u ~ i n g  
t h e  f i r s t  run, c e r t a i n  comput d q u a n t i t i e s  which a r e  independent 

each neasurcmmt Dusir;? cubsequont "Monte Carlo" runs,  t hese  
nurbess a re  r e t r i e v e d  from stoxage r a t h e r  than recomputed in 
order t o  save computer execut ion time, 

andom n u d e r  sequence (such as X,, Ba) are s to red  for 

.O RESULTS 

To determine t h e  e f f e c t  o f  v a r i a t i o n s  i r r  c e r t a i n  parameters on 
spacecraf t  navigat ion accuracy, t h e  computer program descr ibed i n  
the  previous sec t ion  was run for var ious  parameter values.  
Monte Carlo r~liis were male f o r  only tvno cases  and then only t o  
v e r i f y  t h e  r e s u l t s  as given by the  covariance analysis .  
and 3 show a cornparison o f  r e s u l t s  f o r  these tho types  of sna lys i s .  
I n  f i gu re  2, t h a  t h r e e  conponents of  pos i t i on  error (expressed i n  
l o c a l l y  Leva1 coordinates)  arc! shom for a :ionte Carlo s jmulat jon 
nf Inn winc !d?chrJrl l i n ~ g )  2nd fer 2 p y ~ ~ y i 3 n c e  :?a ly . i$  !s .?l id  line^) 
as  a functiori of t i ine.  In a l l  t he  r e s u l t s  t h t  follow, the siinula- 
tion run s t a r t s  a t  ze ro  time with t h e  first measurcrnent made TBY 
minutes l a t e r ,  and with subsequent measurements filade every TBY 
(tine between measurements) minutes. 
time a r e  a f t e r  t h e  co r rec t ion  has  been appl ied based on t h e  measure- 
ment, made a t  t ha t  time, 
o f  f igu res  2 and 3 are t h e  nominal s e t  shorn i n  t a b l e  2, with t h e  
exception o f  SIGE = 0,05e 
ana lys i s  t y p e s  are very c lose ,  t h e  naxiinurn d i f f e rence  bi ing  less 
than 20% Figure 3 shows a comparison of  results for d i f f e r e n t  
n*.tmbers of idonte Carlo runso  
runs,  t h e  be t t e r  t h e  agreement between t h e  covariance and ltonte Carlo 
resultso 

. 

Repeated 

Figures  2 

The errors shocn f o r  a given 

The o the r  pzrane ter  va lues  for t h e  curves  

As can be seenp the  r e s u l t s  f o r  t he  tvxl 

As expected, t he  l a r g e r  =the number of 

Figures  2 and 3 show only pos i t i on  erroxs t y  computations 
are based on q'posftion09 neasurenents  (no measured) and 
v e l o c i t y  e r ro r s ;  hence, are s i m i l a r  i n  tR vior t o  pos i t i on  
errorsP Therefore?, i n  this r epor t ,  p l o t s  c i t y  erfoi-s a r  

Bthou:_!h some t ahu l s t ed  ve loc i ty  e e show,  Also, 
I cortponexts o f  pos i t i on  e r r o r s  (dovirirange, crossrange, and 

v e r t i c a l )  are similar i n  behavior,  F s u l t s  for  only one, t he  down- 
range compon6?nP (which is doirhant.) 
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.Q WEWLTS (Cont i  

obtained for v a r i a t i o n s  of  t en  d i f f e r e n t  para- 
eters are ( symbol shown i n  parenthes is )  : 

P, 

2. 

Standard devia t ion  of horizon measurement e r r o r  (SIGE) 

Azimuth f ie ld-o -view magnitude ( ALUB--&L~) 

imuth f ie ld-o  -vie.w loca t ion  ( NILB) 

Change of azimuth angle per  measurement (AL.IiX) 

5. Corre la t ion  d i s t ance  (CDTC) 

6 ,  Time b e t v ~ e n  measurements (TBE:) 

7, 

8 ,  

Time of  l a s t  measurement (TEiL!) 

Standard devia t ion  o f  i n i t i a l  pos i t i on  e r r o r  (SIGP) 

9. 

10. 

Standard devia t ion  of i n i t i a l  vc!ocit): c x a r  (SIGi'!) 

Number of  !isnte Carlo runs  ( N ? X R )  

The spacecraf t  o r b i t  was not  var ied  but  was assumed t o  be c i r c u l a r  
a t  an a l t i t u d e  of 270 nm with an inc l ina t ion  of IjS, although, changes 
i n  t h i s  i n c l i n a t i o n  a s  well as  i n i t i a l  longi tude and l a t i t u d e  f o r  a 
c i r c u l a r  o r b i t  will have no e f f e c t  because of t h e  two body, inverse 
square c e n t r a l  force  f i e l d  g r a v i t y  model used, 

n The number of cases  t h a t  resul t  frcm a l l  conbinations of  var ious 
parameter va lues  for  t h e  above PO parameters can he very larlje (10 
vhere n i s  number of values  each parameter assi~:nesj. To l i m i t  the 
number of poss ib l e  cases  and t o  provide understandincj of t h e  e f f e c t  
o f  v a r i a t i o n  of a given paramet.er, a nominal se t  of parameter values  

s chosen and v a r i a t i o n s  made i n  individual  parameters about the 
nominal value. Yhere t h e  e f f e c t  of a second or t h i r d  p a r m e t e r  
appeared t o  be important, corresponding v a r i a t i o n s  were made i n  t h a t  
parameter a l so ,  The nominal parameter values  chosen are listed i n  
table 2, The following sec t ions  d i scuss  t h e  results of ind iv idua l  
pararmter v a r i a t i o n s  from this nominal IJrlless otherwise s t a t r d ,  
t h e  parameter valiios for the  d a t a  presented i n  the c\irves and tGhlcs 
of t h i s  s ec t ion  a r e  those l i s t e d  as noi:iinal i n  t a b l e  2, 

The ef fect  of var i a t ion  i n  nureher of Xonte Carlo J ' ~ I R ~  is shom i n  
f i g u r e  3, Also,  tl!e g o d  co:npa~. i~on L;et\\.eeri COViJ~ iC l>C,C  ana lys i s  
and l ionte Car lo  s i m l a t i o n  shown in f igure  2, j i r s t i f ies  use of t h e  
covariance ana1ysi.s upon vhich the folloviing resul ts  are hased. 
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4,@ RESljLTS (Continued) 

4 , l  V?riations of f . ' .p?cs-  - Table 3 t abu la t e s  
d a t a  r c l a t i n g  s t a t e  e r r o r s  t o  measurenent e r r o r s  and t h e  
number o f  measuierfients (defined by t h e  measurement time, 
and TEM, Thus,  t h e  number of measurements = I/rRh!). Cur 
r e l a t i n q  d o v n r s n y  posi t ion error t o  these parameters are 

vm i n  f igure 4, which sliorvs the  l i n e a r  r e l a t ionsh ip  be- 
en s t a t e  and measurement e r ro r se  

.2 Variat ions in  Correlat ion Distance - Figures 5 through 9 
ind ica te  results  for var ia t ions  of cor re la t ion  distance,  The 
i n t e n t  of f igure 5 is t o  indicate  the  e f f e c t  horizon measure- 
ment e r ro r s  will hare on correct ions made i n  the spacecraf t  
loc3t ien.  Referring t o  the f igure,  t h e  so l id  l i n e s  show ac tua l  
l ines-af-sig?it  t o  tho horizon a t  two d i f f e r e n t  measurement 
points.  
measurcrxnts v:here the  corrpsponding l ines-of-sight aye shown 
by the  d x h e d  l i n e s ,  . 

t o  tiori:ontal "corrections" t h a t  need t o  be made i n  the space-' 
c r a f t  l cca t ion  f*-r e r rors  E19 E2 and C3 respnctively,  t o  make 
the measured hori;lim l ines-of-s ight  correspond t o  actual l i n e s  
f ron  t h e  spacecraft  t o  the  horizon ( indicated by broken l i nes )  
The d is tances  V 1 9  V29 and Vg are  corresponding v e r t i c a l  "correct-  
ions" e 

t19 c2 and k3 indicate  possible  e r r o r s  i n  these 

The distance h,, h,, and It, correspond 

P. p a j r ' o f  measurcz;cnts t h a t  a re  correlated will appear as  t h e  
pa i r  ( E j , r f 2 )  r a t h e r  than tho pa i r  (c l  

El and E,, give a sna l l e r  observed angle than the  ac tua l  angle. 

Llncorrclated e r r o r s  tiill regular ly  appear as t h e  pa i r  (El9€.$ 
(thc observed a i g l e  i s  both la rger  and smaller than the  actual  
angle),  iJO\*J asrmr3 t h a t  a pa i r  of horizon measurements have 
h e n  made lP0" qjart i n  azimuth and the  r e su l t i ng  cpparent 
horizoii.+sl and vp r t i ca l  "cornct. icns" averaged t o  give a new 
"correction" f o r  the spacecraft. locat iono A correlated p a i r  
such a5 ( E l s G 2 )  v f j 1 1  tend PO give a zero Iiorizontal correct ion 
but. a no:i-?ero vc1 t j  car correction, The reverse  
nn wcorrc!at,eti p;ir  of fietsurcments - v e r t i c a l  e r r o r s  will  
t e n d  1.0 average t o  % m o  while a non-zero horizontal  e r r o r  will 
appe sr 

) since both e r ro r s  * 3  
.: 
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RMS POS~FIOM ERROR (FEET) RMS VELKITY ERROR (FPS) 1 

1.G 
3,2 
4*8  
7.9 
15-2 

~ 2700 
I 

0.8 
1.5 
2.3 
3.7 
7. I 
12.5 

2e.0 
4.5 
6.7 

11.2 
21.6 
42.4. 
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Legend 

El, E2, E3: 

@ar ' 
001: 

Horizon Measurement Errors 
Actual Angle from Reference t o  Horizon 
Observed Angle from Reference t o  Horizon 
Apparent Horizontal Spacecraft Location Corrections 

Apparent Vertical Spacecraft Location Corrections 

Actual line-of-sight from spacecraEt t o  horizon 
Measured line-of-sight from spacecraft t o  horizon 

h l ,  h2, h3: 

V l r  V2, V3: 

Based on Measurements 1, 2,  and 3 

Based on Measurements 1,  2,  and 3 

Line-of-sight from ffcorrected't spacecraft location t o  
horizon 

Ftgure 5: Effect of Horizon Measurement Errors on "Correction" t o  
Spacecraft Location 
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4,O RFSIJLTS (Continued) 

-2 

4,3 

t e r  cor re la t ion  d 
igure 8, vherein 

come l a t  ion d is tances  

t i o n  process and a f t e  
made and f o r  a large enough cor 
h lb i t ed  by the  coxre l a t i  
correct ions made. Figur 
t h e  neasuseinent e r r o r  as 
the  number of measurements) and the  cor re la t ion  distance.  
As expected, f o r  the  l a rge r  cor re la t ion  d is tances  ( l a rge  
cor re la t ion  between successive measurements) t he  e r r o r  i n  
the  est imate  of tho measurement e r r o r  decreases a f t e r  
several  measurements have been made, 

Figure 6 shows domrange posi t ion e r r o r  as a function of 
time and cor re la t ion  dis tance,  As expected, for  the  longer 

increasing time and cor re la t ion  distance.  For shor t  corre- 
l a t i o n  d is tances  (1000 nm), the  e r r o r s  a re  la rger  than fo r  
t he  whi te  noise case (zero corre la t ion  dis tance) ,  There i s  
probably a strong in te rac t ion  of several  parameters vhich 
causes t h i s  pheno:nenao These e f f e c t s  have not been f u l l y  
invest igated duc t o  time and funding cons t ra in tso  

downrange and v e r t i c a l  pos i t ion  and ve loc i ty  errorq,  

Qar i a t  ions i n  :!u:nSer sf Lleasurernents and Time Between 
!.kawreivn& ... The e f f e c t  of va r i a t ions  i n  the  number of 
measurements and Lime be twen  measurements i s  ahown i n  
f igure  10 and tab les  r figures have sho 

tween measuremmts, corresponds t o  t h e  number o 
ments madeo 
results depending on t h e  number of masurcm@nts 
errors decreasin9 monotonically with inc  
measurementse Referring t o  t a b l e  5 

asurements (TRY) fo r  a given numb 
S%e s ign i f i can t ,  d o e m a t  seem t o  

---..A1 ,a:.., A:-+‘.--- 
Y ” I I , . & U V ~ ” , ,  k,.-””.,”I ! 9cx? 2T!p the crrcrc d!?craae!? !?it!? 

One 
actor  t o  be considered i s  the strong coupli‘ng between the  

r o r s  as  a function 

There is il s ign i f i can t  ~ i ~ ~ e r e n c @  

on the  posi t ion and v 
be for !he data of t a  
ments (as determined 
minutes ,  TCIM is d i r e  

re does appear t o  





LOSIT'I ERROR*( FPSj 

0.1 
0.1 
0.2 
0.2 
8.5 
1 .o 

WEND ( T i m  of  last masurenent) = 6QO niin. 

a 
3 
5 
10 
20 
40 

1 
3 '  
5 
PO 
20 
40 

0.1 
0.2 
0.2 
0.3 
0.8 
1.3 

870 
$30 
COO 
900 
1100 
%110 

109 
100 

140 
190 
220 

a ae 

VERT If irL 

390 
340 
330 
320 
283 
2770 

60 
30 
50 

50 

OS 
0, 
0 .  
0, 
0.3 
C e 3  

0. 1 
0, P 
0. a 
0.1 
0, P 
0, a. 
P 

I. e o  

1 e o  

I. 'a0 
1.1 
P e 2  
1 e 2  

0.1 

0.1 
0.1 
0,2 
0.2 

-_-- 
E RT ICPL 

1.4 
1.4 
1.4 
1 e 5  
a .7 
.7 

0.2 
0.2 
0.2 
c * 2  
0,3 
0,2 



-3 r n ~ ~ ~ ~ r e r n e n ~ ~  and as T3?4 incsrsases, t he  correlation decreases 

fo r  t he  'PBM values 
ance a s  discussed 

- Table 6 tabula tes  
inu tes  (100 masure-  
AEEB, and ALIWC, 

which def ine  the azimuth angle field-of-view (FOV) over vhich 
measurements a r e  taken and the  azimuth angle between these  
measurements, The resu l t s  are in t e re s t ing  in t h a t  they indi-  
ca te  a s ign i f i can t  change i n  e r r o r s  as a function OP these  
pa rme te r s ,  Cases 6 and 13 have unreasonably large e r r o r s  
because e s s e n t i a l l y  no cross  t rack measurements are made, 

The smallest. r s s  posi t ion errox (case 4) occurs, inJerestingly 
enough, not with the  l a rges t  FOV but f o r  only a 180 FQV with 
neasurements made 90" apa r t ,  
(cases  0 and 9) increases  the rss pos i t ion  e r ro r  onlv some 
400 f e e t ,  

Reducing t h e  FOV t o  only BO" 

Ideal ly ,  one vmuld l i k e  t o  make a l l  measurements using the  set  
of d i f f e r e n t  azimuth angles, a t  th-e same time, Such sets of 
measurements should permit t he  hes t  es t imate  of "biases'@ due 
t o  cor re la ted  e r ro r s  and reduce the  e f f e c t  of veloci ty  e r r o r s  
propagating in to  posi t ion e r ro r s s  One cones c loses t  t o  t h i s  
by making .4LI:JC large so t h a t  the  en t i re  FQV is  covered quickly 
but not so l a rge  so t h a t  important components are  not measured. 
Thus,  ca5e 3 Ps b e t t e r  than cases 1 OT 2 i n  t h a t  the 9O"between 
azimuth ,angles permits the  en-tire FOV t o  be covered i n  four 
measurements a s  compared t o  8 and 36 for cases 1 and 2 respect-  
ively,  I n  case 6 ,  t h e  l80"FOV is covered i n  f i r s t  tvm measure- 
ments  made 1F30*apart9 but no cross t rack  measurement is made 
and henceg t h i s  cornponent of the posi t ion e r ro r  is  very la rge  - 
l imited e s sen t i a l ly  by i ts  i n i t i a l  value, 
t i o n  e r r o r  for  case 6 is smaller than for  any other  case however. 

The downrange posi- 

4.5 Variations i n  I n i t i a l  Posit ion and Velocity Error+ - Figure 11 
shows the do:;.;range posi t ion e r ro r  as a function of time for 
several  d i f f e ren t  i n i t i a l  posi t ion and ve loc i ty  uncestalnt ies ,  
Othsr componcnts of posi t ion and ve loc i ty  exhibited s imi la r  
behavior, As can be seen from f igure  l lB after the f i r s t  20 
nieasurements (103 minutes) 
salrc r e g a d l e s s  of  t h e  in i t ia l .  uncer ta in t ies  f o r  values up t o  
I.hosc showna 

the e r ro r s  a r e  e s sen t i a l ly  the  

These r e s u l t s  arc from a covarf.;lnce analysis.  
Carlo F U I I  u s  made f o r  each casep and t h e  results appeared 
consis tent  r.:ith the covariance r e s u l t s ,  

A single  Monte 
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5 e 0 003CLUS ION 

From the  d a t a  of t h e  previous section, t h e  follovdng concllisions 
can 

1 0  

2. 

3. 

4, 

5. 

6.  

be drawis 

The posi t ion and ve loc i ty  e r r o r s  a re  e s s e n t i a l l y  l i n e a r  functions 
of t h e  measurement e r r o r  fo r  measurement e r r o r s  up t o  0.20. 

The azimuth angles a t  which measurements a re  made can ttavo a 
s i g c i f i c a n t  e f f e c t  ( f a c t o r s  of 2 or more) on s t a t e  e r r o r s o  
180 FOV gives  b e t t e r  performance than a 36O"FOV and only a 
20% improvement over a 9O0FOVs 

The co r re l a t ion  d is tance  (exponential  co r re l a t ion )  a f f e c t s  
various error.con?onents i n  d i f f e r e n t  wa-fs. For c o r r e l s t i o n  
d is tances  i n  exceEs of  8000 nn, ?he e r r o r s  decrease with i n -  
creasing co r re l a t ion  distance.  For d is tances  less than 30GO nlli 
( a c t u a l  horizon correlat ion dis tances  a r e  estimated t o  be on 
t h e  order of 2500 nn), the s t a t e  e r r o r s  for  most casts a re  with- 
i n  205; of the s t a t e  e r r o r s  from t h e  white noise case (zero 
co r re l a t ion  dis tance)  e 

A 

The errors a re  s t rongly r e l a t e d  t o  t h e  nmber  of r?easurernents 
made and only s l i g h t l y  dependent on the  time between neasure- 
ments ('ITEX) f c r  values of re!:<_ 10 min. 
of rneesurements, even €or large co r re l a t ions  and shor t  t i n e s  
between measurements ( t a b l e  4) 
e r r o r s  e 8 

IncreasSng the  nurabber 

decreases s i g n i f i c a n t l y  the  

I n i t i a l  posi t ion and ve loc i ty  unce r t a in t i e s  up t o  50 nn and 
lOG0 f p s  respect ively on each axis  produces very slig!rt d i f f e r -  
nces i n  s t a t e  E ~ F O F S  afte  20 o r  m r e  m?asuren?ents have bean 

made 

he l inear ized covariance analysls  was ver3.fied by blonte Carlo 
%mu 1 a t  ion 



1 8tFil%ering Horizon Sensor Measurements for Orbital 
Navigation" by Robert .J. Fitzgerald, Proceedings of 
AI[AA/Jl\CC Guidance end Control Confermce Seatt le ,  
lashington, August 15, 1966 - August 17, 1966, 
ppe 500-509s 

2, "E st h a t  ion Us inq SamQled D3ta Containing Sequent i a 1  ly 
Correlated Noise", A. E.  Dryson, J x ~  2nd Le J. Henrikson, 
Jcurnnl of Spacecraft and Rockets, VoPunie 5,.-Np. 6 ,  
June, 1968, 
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2.0 PREDICTED FAILURE RATES 

2.1 INTRODUCTIOIU 

R e l i a b i l i t y  was considered a c r i t i c a l  design t radeoff  parameter a t  all 
equipment l e v e l s  throughout t h e  GN&C reconfigurable  computer study. 
lowest and most c r i t i c a l  s tage  of equipment design i s  a t  t h e  device l e v e l .  
This s ec t ion  contains  the  development of the  device and module f a i l u r e  rates 
t h a t  were used t o  generate  the  system predicted p robab i l i t y  of success l e v e l s  
shown i n  Sect ion 3 of t h i s  appendix. 

The 

The da ta  i n  t h i s  s ec t ion  i s  l a r g e l y  based upon Autonetics'  experience 
i n  the  design, development and manufacturing of high r e l i a b i l i t y  equipments. 
Related experience covers a broad spectrum of a c t i v i t i e s  of complete e lec-  
t ron ic  systems. This unusual background of systems experience i s  based on 
severa l  major programs where e f fec t iveness  and r e l i a b i l i t y  were among the  
primary requirements. Autonetics experience includes such major programs as  
Minuternan I, Minuteman 11, Minuteman 111, and F-111. 

With the  i n i t i a t i o n  of t he  Minuteman I program, which required a one- 
hundred fo ld  increase i n  r e l i a b i l i t y  from the  s t a t e -o f - the -a r t  a t  t h a t  time, 
it w a s  necessary t o  become involved i n  design and production problems of 
component p a r t s .  Autonetics,  therefore ,  designed and managed a r e l i a b i l i t y  
improvement, program f o r  e l ec t ron ic  p a r t s  t h a t  made achievement of Minuteman 
r e l i a b i l i t y  goals  poss ib le .  The r e l i a b i l i t y  improvement program was  a co- 
ordinated program involving e l ec t ron ic  p a r t s  t h a t  es tab l i shed  suppl ie rs ,  
procedures, con t ro l s  and tests necessary f o r  t he  production of high r e l i a b i l i t y  
p a r t s .  
used t h e  Minuteman p a r t s  spec i f i ca t ions  as t h e  b a s i s  t o  prepare mL-R38100 
f o r  es tab l i shed  r e l i a b i l i t y  p a r t s .  This e f f o r t  i s  continuing with technica l  
and management support t o  EiaDC i n  t he  implementation of these spec i f i ca t ions ,  

I n  addi t ion,  under A i r  Force Contract (m04(647)-923), Autonetics 

The Minuteman I1 and 111 programs contain s ta te -of - the-ar t  advances 
The r e l i a b i l i t y  requirement i s  higher ,  the  beyond those of Minuteman I. 

func t iona l  c a p a b i l i t i e s  a r e  s i g n i f i c a n t l y  increased,  and the weight i s  reduced 
This achievement i s  being r ea l i zed  i n  production hardware f o r  these  programs. 
The in tegra ted  c i r c u i t s  a re  designed t o  Autonetics spec i f i ca t ions  and pro- 
duced by p a r t s  suppl ie rs .  To ensure the  production of r e l i a b l e  p a r t s  of a l l  
types ,  Autonetics developed and i s  managing a component qua l i t y  assurance 
program which includes a physics-of-fai lure  program (conducted by Autonetics) 
t h a t  delves deeply i n t o  f a i l u r e  mechanisms. 

Autonetics i s  present ly  involved i n  advancing the  s ta te -of - the-ar t  
through MOS technology. Overall system r e l i a b i l i t y  i s  enhanced by the  use 
of MOS technology, s ince  fewer devices are required t o  perform a p a r t i c u l a r  
funct ion with l e s s  weight, less cu r ren t  ana power. The higher complexity 
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OS chips  have predic ted  f a i l u r e  r a t e s  higher than t h a t  of an average b ipo la r  
I C ,  whereas each of these  
devices r e s u l t i n g  i n  a s u b s t a n t i a l  net  ga in  i n  r e l i a b i l i t y .  

devices can func t iona l ly  rep lace  many b ipo la r  

Plated wire memory w a s  a l s o  a prime cons idera t ion  f o r  t h e  Reconfigurable 
G&C Computer Study. 
and process technology necessary $0 produce longer  l i f e t ime ,  NDRO p l a t ed  w i r e  
and p l a t ed  wire s tacks .  
es tab l i shed  f o r  t he  production of p la ted  wire. 

Autonetics has developed and demonstrated a l l  t he  materials 

A complete p i l o t  production c a p a b i l i t y  has been 

2.2 ORBITAL FAILURE RATES 

It has been assumed t h a t  t h e  space environment f o r  t he  computer i s  
r e l a t i v e l y  benign. 
i n  accordance with MIL-STD-726A f o r  an o r b i t  phase environment: 
temperature approximately 25 C, minimum power on-off cycl ing,  minimum vibra-  
t i o n ,  and minimum handling. No addi t iona l  degradation f a c t o r s  are required 
s ince  the  device f a i l u r e  r a t e s  were derived and extrapolated b a s i c a l l y  from 
Minuteman I1 s t r a t e g i c  f i e l d  operat ion environment - 

A f a c t o r  of 1 .0  was appl ied t o  t h e  device f a i l u r e  rates 
operat ing 

2.3 BIPOLAR AND DISCRETE DEVICE RELIABILITY 

Table 2-1 i s  t h e  achieved generic  p a r t  r e l i a b i l i t y  from t h e  Minuteman I1 
production program. These achieved opera t iona l  fa i lure  rates were extrapolated 
i n  t h i s  study t o  1972 f o r  b ipo la r  I C  and d i s c r e t e  devices.  Since the  s i l o  
environment i s  benign, it c lose ly  resembles an o r b i t a l  benign space environ- 
ment and requi res  no addi t iona l  degradation or  r e l i a b i l i t y  usage f a c t o r s .  

6 TABLE 2-1 ACHIEVED &IlXUTEMAM I f  FAILURE RATES DATA TO 3-1-69 (FAILURES/lO HRS.) 

0 Failures 

7- 3 



The uncased p a r t  f a i l u r e  r a t e s  are reduced from the  d i s c r e t e  device 
f a i l u r e  rate because ind iv idua l  packaging problems a r e  eliminated and t h e  
number of lead  bonds are reduced. The following are f a i l u r e  r a t e  reduct ion 
f a c t o r s  based upon failure mode appoPtionment from Minuteman I1 achieved 
data .  

P a r t  - 
Trans is tors  

Fa i lure  Rate Reduction 

21 percent  

Diodes 28 percent  

Capacitors 28 percent  

I.C.'S 16 percent  

MOS 10.4 percent  

2.4 MOS RELIABILITY 

To a n a l y t i c a l l y  p red ic t  t he  r e l i a b i l i t y  of MOS devices,  a study was 
conducted t o  develop a r e l i a b i l i t y  t r a n s f e r  model from a present  day device 
with s u f f i c i e n t  d a t a  and s i m i l a r i t i e s  i n  process,  mater ia l s  and screens as 
found f n  MOS devices .  
i t i e s  as wel l  as an accumulation of device hours and f a i l u r e s  from tracked 
f i e l d  operat ion i n  a high r e l i a b i l i t y  program. 
on removed devices from in-house and f i e l d  operat ion f o r  a s t a t i s t i c a l l y  
va l id  f a i l u r e  r a t e .  (Reference 1) Table 2 - 2 . i s  t he  pred ic t ion  f o r  the  
average MOS f a i l u r e  r a t e  der ivat ion.  

Bipolar 'technology w a s  found t o  employ these  similar- 

Post mortem ana lys is  was done 

7-4 
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TABLE 2-2 M S  FAILURE RATE 

E-R GRADE CHIP JAEA: 21.472 K SQ. MIS LEAL6 : 42 

4- Faulty Diffusion 

1. er i t i  ss% 

2. 

e 

3 s  of 

of b 
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2.5 PLATED mm Y 

A r e l i a b i l i t y  model was  developed for t h e  p l a t ed  wire memory ( 
array based on in-house and f i e l d  da t a ,  The areas t h a t  were considered were 
so lder  j o i n t s ,  f a b r i c a t i o n  techniques between m u l t i - l a y e r  c i r c u i t  boards and 
memory mats and planes,  p la ted  w i r e  cons t i t uen t s ,  and the  a b i l i t y  t o  de t ec t  
defec ts  p r i o r  t o  shipments vs normally d i s t r i b u t e d  ( i n  time) failure mechanisms. 
Table 2-3 i s  the  result of the above which y i e lds  the  model f o r  t h e  p la ted  
wire memory ar ray  extrapolated t o  1972. 
expected f o r  the  p la ted  wire memory plane.  

Figure 2,1 i s  the  pred ic ted  growth 

TABLE 2-3 PUmD WIRE MEMORY PLANE PREDICTIOH ( 1 6 ~ )  1972 

Elements 

B i t  Cable 
Bit w i r e  QSofder) 
Interstgtuals (SO 
Board Plane 

Connectors 

2 
2448 
1% 
2 

2448 
288 
4 

2.6 ADVANCED PACKAGING 

The advanced packaging concept where uncased devices are u l t r a s o n i c a l l y  
bonded t o  a ceramic subs t r a t e  w i l l  enhance the  r e l i a b i l i t y  of the  equipment. 
A s u b s t a n t i a l  reduct ion of solder  connections, attachment of the  due, ind iv idua l  
package discrepancies ,  and fore ign  mater ia l s  were the  f a i l u r e  mechanisms which 
were considered to be the  primary sources of f a i l u r e  r a t e  reduct ions.  The 
packaged subs t r a t e  r e l i a b i l i t y  cons i s t s  of t he  f a i l u r e  r e t e  of the  uncased 
devices,  t he  subs t r a t e ,  number of leads  which go t o  the  ex terna l  p ins ,  fore ign  
mater ia l  and d i e  bond cont r ibu t ion  (10% of the  f a i l u r e  r a t e  of the  uncased 
devices)  a 
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2.7 DEVICE FAILURE RATES 

Table 2-4 shows t h e  device f a i l u r e  rates by generic  families f o r  both 
cased and uncased devices extrapolated t o  1972. 
f a i l u r e  rate growth curve v6 time f o r  MOS devices and p la ted  w i r e  memory 
planes.  

Figure 2 . 1  i s  t h e  pred ic ted  

TABm 2-4 DEVICE FAILUEU RATES (1972) 

TJ%XISiStOr 
Diode  
Resistor 
Capacitor 
Subs tmte 

ConnecLoa: 

B l a y  Line 
r iable  Resistor 
I 

2.8 MODULE FAXLURF: RATE PBEDXCTXONS 

Tables 2-5 through 2-11 a re  the  o r b i t a l  operat ional  f a i l u r e  r a t e  predic- 
t i ons  for each type of module t h a t  may be used i n  the  computer organizat ions,  
These t a b l e s  were used i n  der iving t ab le s  4-9 and 4-10 of Volume XI. 
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3.0 RELIABILITY MODELS AND CALCULATIONS 

3.1 RELIABILITY DEFINITIONS AND RELATIONSHIPS 

3.1.1 Definit ions 

I n  t h i s  analysis  the following def in i t ions  and relat ionships  w i l l  be 
used. 

Let 

f ( t )  = f a i l u r e  density function 

F ( t )  = Failure  d i s t r ibu t ion  function 

R ( t )  = r e l i a b i l i t y  d is t r ibu t ion  function o r  r e l i a b i l i t y  function 
z ( t )  = hazard r a t e  o r  instantaneous f a i l u r e  r a t e  

8 = mean t i m e  t o  f a i l u r e  

Then 

3.1.2 Exponential Functions 

The f a i l u r e  densi ty  function is  of ten represented by an exponential 
function 

- A t  = As ( 3 - 5 )  

i s  constant hazard rate,  see E q  (3-8). 



Substituting Eq (3-5) into (3-1) - (3-4) results in, respectively: 

-at 

(3-9) 
1 " x  

3.103 

A computer system model can be made generally of basic reliability models 
for the following configurations: 

1. Series-parallel 
2. Parallel-series 
3. Partial redundancy 
4. Standby 

Expressions f o r  these models are readily available (Rzference 9) and 
will not be given here. 

3.2 CANDIDATE RELIABILITY MORELS AND FUNCTIONS 

Figures 3-1 through 3-8 give the following eight candidate reliability 
mciels and functions : 

Candidates Models 

1. Mon-modular Multicomputer without VCS (llC & llA) 3-1 

2. Mon-modular Multicomputer with VCS (lZc & la) 3-2 

3. Modular Multicomputer without VCS (21L & 2u) 3-3 

4. Modular Multicomputer with VCS (22c & 2a) 3-,4 

5. EJon-modular Multiprocessor without VCS (31e & 31A) 3-5 

7. Modular Multiprocessor without VCS (blC & bu ) 3-7 

6. Mon-modular Multiprocessor with VCS (32c & 3%) 3-6 

8. Modular Multiprocessor with VCS (4,,, 42C+9 & ha) 3-8 



i c h  represent  t h e i r  respec t ive  u n i t s  i n  Figures 3-1 
through 3-8 are defined as follows: 

units 
___p_ 

vcs 

Power Converter 

Chassis 

1/0 S e r i a l  Switch 

1/0 P a r a l l e l  Switch 

Processor 

Input/Output Processor 

Memory ( 3 2 K  or  1 6 ~  words) 

These r e l i a b i l i t y  models were developed based on the  candidate computer 
c h a r a c t e r i s t i c s  presented i n  V D l a  11, see 4.5.2. 
present  i n  the  candidates  and each computer simply had 3 2 K  of memory. 

ar t h i s  ana lys i s  n 3 . q  
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303 CANDIDATE RELLBBILITY VALUES TIME: TO FAILURE 

d Figure 3-1 give t h e  reli  
l u r e  f9r t h e  s ix teen  csndi 

l i a b i l i t y  mdels nd f u n c t i m s  given i n  Figure 3-1 

2, The exponenti 

3. The numerical l u e s  af t h e  u n i t  f a i l u r e  rates ( X ) f o r  t h e  canven- 
t i o n a l  and advanced c m p u t e r  design technalogy giden i n  Tables 
3-2 and 3-3, respec t ive ly ,  

4. 

5. 

The space s t a t i m  mission d u r a t i m  (T,) of 6 months, and 

Q u i v a l e n t  mean t i m e  t3 f a i l u r e :  

R(Tm) = ccmputer r e l i a b i l i t y  f D r  t h e  m i s s i m .  

9-29 
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1.0 INTRODUCTION 

This appendix provides detailed description o f i e o l s t o r  devices considered 
during a power dis t r ibut ion study. 
devices and t h e i r  operation, the f a i l u r e  modes and the e f f ec t s  on the power 
dis t r ibut ion system are discussed, The following i so l a to r  devices are described 
i n  t h i s  appendix: diodes (computer, ion implantation, and SchOJttky barrier 
hot c a r r i e r )  magnetic devices (simple magnetic amplifiers, four aperture mag-  
net ic  switches, and paraformers), sol id  s t a t e  control lers ,  and electrdmechanical 
relays.  

I n  addition t o  the  description of the 

The second half  of t h i s  appendix provides some additional information on 
power converter design constraints  which are useful i n  determining the impact 
of power converter design options on the overal l  system desigi,. 
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2.1 DIODES 

Diodes can be used i n  DC systems by oping two or more EC busses t o  one 
They w i l l  p r o t e c t  t h e  load and o ther  busses aga ins t  a shorted bus or 

They p r o t e c t  o ther  busses from a 
load. 
one connected with t h e  p o l a r i t y  reversed. 
high bus but  do not  p ro tec t  t h e  load. 
f o r  a shorted load.  They are also used t o  r e c t i f y  AC vol tages .  The conven- 
t i o n a l  d i f fused  s i l i c o n  diode junc t ion  usua l ly  fails shor t  due t o  overs t ress .  
The interconnect ion may then fuse  open o r  t h e  diode may o r i g i n a l l y  f a i l  open 
due t o  fus ing  o r  mechanically opening of t h e  interconnect ions.  
disadvantage i s  the  power d i s s i p a t i o n  and vol tage v a r i a t i o n  introduced by 
t h e  forward vol tage drop. 

They provide no p ro tec t ion  t o  t h e  busses 

Their main 

Both ion  implantat ion diodes and Schottky Barrier Ha% Carrier Diodes can 
be designed t o  reduce t h e  forward vol tage drop and power d i s s ipa t ion  by 50 t o  
TO$, usual ly  a t  t he  c o s t  of increased reverse  leakage cur ren t ,  lower breakdown 
vol tages  and reduced temperature r a t i n g .  

Table 2-1 compares the  c h a r a c t e r i s t i c s  of t h e  th ree  types of diodes f o r  
Table 2-2 summarizes t h e  charac- a s i m i l a r  1 m a  computer diode appl ica t ion .  

t e r i s t i c s  f o r  a 35A d i f fused  diode, a 3OA i on  implantatfon diode and a 5OA 
hot  carrier diode. 

8 -2 
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2.2 MAGNTIC ISOLATORS 

Magnetic i so l a to r s  of three types a re  discussed. These are a simple 
magnetic amplifier, a four aperture magnetic switch developed by Stanford 
Research I n s t i t u t e  fo r  Jet Propulsion Labs on a NASA contract, and the para- 
metric magnetic device cal led a Paraformer m, a product of Wanlass E lec t r i c  
Comnpany. 

2.2.1 

Figures 2-1 through 2-4 show the schematic, hysteresis loops, timing 
diagram and t r ans fe r  cha rac t e r i s t i c  fo r  a magnetic amplifier configuration. 
The magnetic amplifier consists of two square loop cores. 
the load s i d e  are reversed t o  induce opposite voltages i n  the two control 
windings which are  driven w i t h  a current source. Since the usual current 
source consists of a low DC voltage and a f a i r l y  large inductor t o  give a 
high AC impedance, t h i s  configuration is shown f o r  the current source. 

The windings i n  

The description i s  f o r  a square wave source voltage; however, the opera- 
t i o n  i s  similar f o r  a sinusoidal source. With no control current,  t he  hystere- 
sis  loops of the two cores are superimposed and the cores absorb the full volt-  
seconds of the source and the load sees the small magnetizing current of the 
cores. 

When control current flows a current flows i n  the load up t o  a value 
determined by the product of the control current and the turns r a t i o  of the 
control and load windings. 
t he  magnetic equation 

From the  diagrams of Figures 2-1 through 2-4 and 

Volt-Seconds = 

%he following observations can be made: 

1, 

2. 

3 .  

4. 

With no control current most of the source voltage i s  dropped across 
the  core windings and the switch i s  o f f .  

TRe control current can be set so the  load receives fu l l  current but no 
more. Booth cores we f u l l y  saturated and the  source vo l t  
current are i n  phase. 

oad tr ies t o  draw a d d i t i  
ternately come out of s 
a fixed power is delive the load. This is  acc 

ive  manner by s h i  
e Thismeans cur ows back i n t o  the  source. 

urrent (overload or short)  t h e  
on and absorb su f f i c i en t  voltage 

he phase of t he  load current and 

onditions there  is no 
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An additional observation from design experience i s  tha t  the inductor 
i n  the  control c i r c u i t  i s  a s ign i f icant  contributor t o  s ize  and weight. 

The f a i lu re  charac te r i s t ics  of the device are  as follows: 

I. Shorted load: 
value automatically. It can be shut off by snutting off the control 
current ,, 

The power taken from the source i s  l imited t o  some preset  

2. Shorted Source: 
load t o  the shorted source up t o  the preset  value. 1% can be shut off by 
removing the control  current.  

The c i r c u i t  i s  b i l a t e r a l  and w i l l  pass power from the  

3. Open Control Winding: Fa i l s  open. 

4.  Shorted Control Windings: Fa i l s  closed. 

5. Excessive Control Current: Preset  power l imit ing point i s  raised. 

6 .  Excessive source voltage o r  l o w  frequency (including D C ) :  
t i e d  t o  source after core voltsecond rat ing i s  exceeded. 

Load effect ively 

7. Dielectr ic  Fai lure:  Most transformer f a i lu re s  are due t o  fa i lures  of 
the insulat ion system and the voltage s t r e s s  seen by the insulat ion i s  
important. If the control winding t o  load winding r a t i o  i s  ten,  the 
induced voltage i s  ten times the source voltage or 2,550 peak vol t s  for 
a KL-STD-704A, 1 1 5 V A C  high-line t ransient  (180 VACRMS) . 

c 

FIGURE 2-1. M GIVETIC AMPLIFIER SCHEMATIC 
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Core I1 

IC = 0 

FIGURE 2-2. MAGNETIC AMPLIFIER HYSTERESIS LOOPS 

Source 
Wol tage 

Load 
Chrrent 
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$11 gls 
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' I  I 

b C 
I 1  I @  I 

FIGURE 2 -3 .  MAGNETIC AMPLIFIER TIMING DIAGRAM 

MAGNETIC 
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2.2 .2  SRI Magnetic Connection Switch 

Reference 8-1 describes a four aperture core with multiple windings 
A t h a t  i s  used as an off-on switch f o r  a 2.4KHz,5OV square wave source. 

design requirement i s  t h a t  the  switch f a i l s  open fo r  e i the r  a load or switch 
fa i lure .  The switch contains a voter  c i r c u i t  such tha t  two or more of f i v e  
inputs  a re  necessary t o  turn  it  on. No s ingle  input can e i the r  t u rn  the  
c i r c u i t  on o r  hold it on. 

Figure 2-5 i s  taken from the reference and has been simplified t o  show 
conceptually how it operates. To connect the load t o  the source, the  inductor 
i s  caused t o  sa tura te  and the  transformer t o  operate i n  i t s  unsaturated region. 
To disconnect the  load from the  source, the transformer i s  caused t o  sa tura te  
and the inductor i s  operated i n  i t s  unsaturated region. 

The reference describes the power, control ,  and voter c i r c u i t s  i n  d e t a i l ,  
the  f a i l u r e  modes, and how t o  do an actual  design. It should be noted the 
report  recommends transformer dr ive t o  ensure c r i t i ca l .  volt-second balance. 
This transformer should be included i n  any comparison with a l te rna t ive  switches 
i f  it i s  not otherwise required. PlLso, the  loss i n  the  control  c i r c u i t r y  
i s  apparently not considered i n  the report  and should be included i n  comparison 
of e f f ic ienc ies  s ince it may be subs tan t ia l .  Since the reference i s  assumed 
t o  be readi ly  avai lable  t o  readers of t h i s  report ,  the  concept w i l l  not be 
expanded fur ther .  

The f a i l u r e  charac te r i s t ics  of the  device are as follows: 

1. 

2.  

3. 

4. 

5 .  

Shorted Loads: The current  t o  the  load overpowers the control  s ignals  
l imi t ing  or removing the current  t o  the load. 

Shorted Source: 
t o  the source from the load up t o  a value allowed by the cont ro l  c i r c u i t  
with the a b i l i t y  of the cont ro l  c i r c u i t  t o  t u rn  the switch o f f .  

Uncertaiq c i r c u i t  appears b i l a t e r a l ,  passing power 

Open Control Windings: 

Voter Windings: Fa i l s  open 

Source Bias: 

Voter Bias: F a i l  open with no voter input. W i l l  t u rn  on with one 

Fa i l s  open - can be made fail-op with one o r  more 
redundant p a r a l l e l  windings. 

o r  more voter inputs.  

Shorted Control Windings: 
so shorting them has no loading e f f ec t  on the source. Fai lure  modes 
would be same as opening the windings. 

There i s  no AC f lux  through any cont ro l  windings 

Excessive Control Current: 

Source Bias: 'No e f fec t  

Voters and Voter Bias: The r a t i o  i s  the c r i t i c a l  parameter. "lie r a t i o  
i s  made fa i l -op or  f a i l  safe  by using no external  r e s i s t o r s  
i n  se r i e s  with these windings and driving them from the 
same voltage source. 
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o.  Excessive Source ‘Joltage o r  Low Frequency: Load effect ively t i ed  t o  
source a f t e r  core volt-seccnd rat ing i s  exceeded. 

7. Dielectric Failure:  Winding methods and winding resistance minimize 
the e f fec t  of shorted terms. 

Oth2r: The switch i s  extremely sensi t ive t o  the volt-second balance of 
th? driving source and r e l i e s  on a transformer drive t o  assure t h i s  balance. 
Any inbalance has a cumulative effect ive and r e su l t s  i n  heavy surges of 
current being drawn from the source. 

Any s ingle  short  t o  the  core can be tolerated.  

e.  

8 turrbl e 

Figure 2-5 

In;luctor/Transformer Circui t  
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ON: The two voters are energized. One voter almost overcomes the 
voter bias mmf and the second voter overcomes it and saturates 
legs 1 and 2 downward with the f l u x  returning in leg 3. With 
the saturable inductor saturated and all f lux accounted f o r ,  
legs 4 and 5 act as a conventional two coil shell type trans- 
former that connects the source to the load. 

OFF: The two voters are not energized. 
saturates legs 4 and 5 downward with the flux returning in 
leg 3. With th saturable transformer seturated it zan coupla 
no pmer to t h e  gs 1 and 2 are uncaturnted snd f-ez to 
act as an inductor in series with t h e  saturated transformer and 
keens it frm shortina; the EOUTC ~ B ~ R S  ? s  not assantfa1 in 
leg 3 since the 1 
fs dropped ~CFOIS 

The voter bias winding 

a bias  that fnsures the v o l t a ~ a  
tureble inductor ~ 

Figure 2-6 

SRI Switch 
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2.2.3 Wanlass Paraformer 

Reference 8-2 describes a parametric transformer t h a t  has charac te r i s t ics  
t h a t  can be used t o  make an AC switch. 
f o r  the most pa r t  from the reference. 
f igurat ion and governing equation f o r  the device. 

The following descr ipt ion i s  abstracted 
Figure 2-7 shows the  schematic, con- 

Assume tha t  an AC voltage i s  applied t o  the input terminals of the  device. 
A flux path i s  established tha t  flows i n  the primary and secondary core, but  
none of t h i s  f lux links the secondary winding and there i s  no output. 
secondary c i r c u i t  i s  an U: tank c i r c u i t  and if  it i s  excited, it w i l l  o s c i l l a t e  
a t  i t s  charac te r i s t ic  frequency. 
c i r c u i t  i s  parametrically pumped by varying the inductance with time a t  twice 
the resonant frequency of the tank. 
can be seen by following the waveforms of Figuse 2-8. 
shown as a square wave; however, it can be sinusoidal or  anything between. 
Thg output i s  always sinusoidal because of the LC tankland is  always sh i f ted  
90 
secondary inductance is  minimum and vice versa. 

The 

This o sc i l l a t ion  can be sustained if the  

This i s  exactly what the input does as 
The input voltage is 

since f o r  parametric pumping the voltage magnitude i s  maximum when the  

Some of the device's in te res t ing  charac te r i s t ics  are noted. 

1. It can be seen from the governing equation t h a t  no voltage can be coupled 
unless some secondary current i s  present. 
s t a r t i ng  c i r c u i t .  
there  i s  no output even with the input present.  

This must be supplied by a 
Without i n i t i a l  current from t h i s  starting circuit, 

2. The device i s  marketed as a l i n e  s t ab i l i ze r  or regulator,  t he  regulating 
mechanism being similar t o  t h a t  of a constant voltage or  ferro-resonant 
transformer. As such, the output voltage changes as a function o f  input 
frequency (a 1% change i n  input frequency gives about a 1.5% change in . 
output voltage) and load power factor  (a change fraan 0.5 t o  1.0 i n  power 
factor  gives about 1-25  
power factor  i s  highly inductive varying from about 0.2 t o  0.5 depending 
on load. 

change i n  output voltage). Also t he  input 

3. The output c i r c u i t  is a LCR osc i l l a to r  c i r c u i t  and w i l l  s top osc i l la t ing  
i f  overloaded by a shcrted output, or too low a value of R (overload) 
tha t  spoi ls  the Q, or a shorted or open capacitor or inductor. 
gives the device desirable f a i l u r e  modes and a method of turning it off. 
Oscillations also cease if the input frequency and reson 
are not within a few percent. 

An AC (or E) voltage applied t o  the output 
It can modulate the primary reluctance but  
or  input capacitor t h e i r  i s  no coupling mec 
l a t e r a l  i n  operation. 
t o r .  

This 

4. not couple t o  the  
there  is no f lux  

It can be 

5. Q-p ied  ef f ic ienc ies  fo r  a 5 ercent 
and 75 percent a t  half  load. 
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Pr imalr 
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(Li) = L + i  

Figure 2-7 

Paraformer Characterist ics 
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Figure 2-8 

Paraformer waveform re lat ions 
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6 .  The magnetic s t ructure  i s  typical ly  about twice the s ize  of a conventional 
transformer of the same frequency, VA, and temperature rating. To t h i s  
must be added the resonant capacitor which must be s table  with temperature 
and age. The t o t a l  s ize  penalty is  about 3 times tha t  of a conventional 
transformer with a weight penalty of about 2.5 times. 

Tkie f a i lu re  charac te r i s t ics  are as follows: 

1. When the c i r c u i t  stops osc i l la t ing ,  it draws l i t t l e  power from the source 
and del ivers  none t o  the load. The c i r cu i t  stops osc i l la t ing  i f :  

a. Capacitor opens or shorts o r  d r i f t s  excessively 

b. Input voltage increases o r  decreases excessively from nominal 

c Input frequency increases o r  decreases moderately from nominal 

d. Load shorts or becomes excessive 

e. Secondary turns  short  t o  each other 

f .  Core charac te r i s t ics  change radically.  

2.  The c i r c u i t  passes no energy from an active load t o  a shorted input bus. 

3. The probabi l i ty  of a primary t o  secondary short  are  very much i e s s  than 
Ln a conventional tramformer since they are  separated by inches rather 
than m i l s .  Also an insulated core gap can provide one more bar r ie r  fo r  
primary t o  core t o  secondary shorts .  
occur through the s t a r t i ng  c i r cu i t ,  but since t h i s  can be low power and 
short  duty cycle, a h u g e  measure of Pedundancy i s  pract ical .  

A primary t o  secondary short  can 
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2.3 SOLID STATE CONTR9L 

Reference 8-3 reports on an LTV contract t o  prove the f e a s i b i l i t y  of 
sol id  s t a t e  switching fo r  an e n t i r e  a i r c r a f t  e l e c t r i c a l  d i s t r ibu t ion  control 
network. The following i s  abstracted from the  reference. 

Solid s t a t e  devices cannot be e f f i c i en t ly  employed on a part-for-part  
replacement basis ;  therefore, the en t i r e  e l e c t r i c a l  system i s  redesigned. 
For comparison purposes, two complete simulators are b u i l t  fo r  observation 
and t e s t ,  one with production A-7B e l e c t r i c a l  hardware and the other with 
sol id  s t a t e  components and a high density harness. The sol id  s t a t e  components 
are  being b u i l t  on LTV contracts t o  Texas Instruments f o r  s ignal  sources 
and t o  Leach fo r  indicator drivers and power control lers .  (References 8-4 and 8-5). 

Figure 2-9 i s  a block diagram of the sol id  state power d i s t r ibu t ion  
system from Reference 8-3. The system is composed of three basic building 
blocks. These are:  (1) Signal Sources, (2 )  Control Logic, and (3) Power 
Controllers (bus switching and load switching). Signal sources are trans- 
ducers which provide d i g i t a l  output. 
functions such as temperature, pressure, mechanical motion, e t c .  Their out- 
put signals are f ed  in to  the  control logic un i t  where they are correlated 
i n  a prescribed method t o  provide a signal t o  control t he  power controllers.  
The logic switching i s  performed by standard integrated c i r c u i t  gates.  
fan out capabi l i ty  normally provided by multiple pole switches and relays is  
provided by the integrated c i r c u i t s .  The flow of power from the  power 
sources t o  the bus and from the bus t o  the loads i s  controlled by power con- 
t r o l l e r s .  

They are used t o  sense controll ing 

The 

The character is t ics  of the LTV power control lers  are l i s t e d  i n  Tables 
2-3, 2-4, and 2-5. 
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TAKE 2-3 AC LOAD C O N T R O m R  CHARACTERISTICS 

Normally open SPST 

ll5/2OO VAC + 5% with Mil-Std-704 t r ans i en t s  

400 Hz + 5% No t r ans i en t s  spec i f ied  

Control voltage: OFF - l O V  t o  2.5V 2 lOOV t r a n s i e n t s  

- Volt age : 

Frequency: - 

ON 3.5 t o  +1OV + lOOV t r ans i en t s  - 
ON-OFF response time: One Cycle 

Typical t r i p  cha rac t e r i s t i c :  130$ Overload, 5.12 sec;  2000& 
Overload, 1.25 msec. 

Temperature : 

Wire l i s t :  

Voltage drop : 

Physical - 1- 

-54Oc t o  120Oc Case 

Power I n  
Power Out 
Control 
Trip Indica tor  
Reset 
S i g n d  GRD 
Power GRD 

1.5 VRMS M a x .  

Amp rating: 1.015 x . O l 5  x 1.015 inches with mounting 
s tuds and t e rg ina l s  extending 0.375 inches: 2.0 oz 
max. w t .  0.5 C/W thermal res i s tance .  

- 15-35 Amp r a t ing :  
studs and te rmina ls :  5 ox max.  wt .  0.25 c/w t h e w a l  
res i s tance .  

2.5 x 1.515 x i . 3  inches pigs 0.375 for 

E l e c t r i c a l  - Current F a i l  Safe ON OFF 
Rating Current Power Power 

Watts - Watts 2!!?EL P 

1 10 
2 30 
3 30 
5 30 
7.5 60 

10 60 
15 90 
25 150 
35 210 

1-75 
3-25 
4.75 
8 

11 * 75 
16 
25 
40 
50 

0.311 
0.311 
0.311, 
0.311 
0.311 
0 e 311 
0.311 

0.311 
0.311 
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TABLE 2-4 AC BUS CONTROLLER CHARACTERISTICS 

Normally Open SPST 

Conditions not s t a t ed  a re  the same as the load  con t ro l l e r s .  

Trip c h a r a c t e r i s t i c  (overload) : 200% f o r  10 see.  maximum 

Wire l i s t :  Power I n  
Power Out  
Control 
Lookout 
Signal GRD 
Power GRD 

Current ON OFF Thermal 
Rating Power Power Resistors 02. 

Size - amps Watts Watts "c/w Weight 

10 1 5 . 1  0.31 0.25 5 2.5 x 1.515 x 1 .3  i n  +0.375 

75 120 0.50 0.10 10 2.5 x 1.0 x 3.8 i n  Total 
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TABLE 2-5 W: LOAD CONTROLURS 

Normally Open SPST 

Volt age : 21-29 VDC with Mil-Std-704 transients. 

Control voltage: OFF - l O V  to +2.5 VDC + lOOV transients 
+3.5~ to + ~ O V  + 1 % ~  transients - 

Turn on time: 1 ms m a x .  

Turn off time: 6 ms m a x .  

Voltage drop: O.5V max. 

Current limiting: 130 to 150% rated current 

Trip out time: 

Temperature : 

3 sec. ma. 

-54Oc to +12ooc case 

1 sec. minimum a t  28 VDC 

Wire list: Power In 
Power Out 
Control 
Trip Indicator 
Reset 
Signal GRD 
Power GRD 

Current 
Rating 

1 
2 

3 
5 
7.5 
15 
25 
35 

Fail 
Safe 
Current 

10 

30 
30 
30 
60 

90 
150 
210 

Power - 

2.0 

2.5 

4,. 5 
6.5 
12.5 
22 

31 

Power - 

0.156 
0.158 
0.164 
0.174 
0.192 
0.220 
0.248 

Leakage 
MA 

1.075 x 0.710 x 1.015 + 0.375: 1.803 
1.075 x 0,710 x 1.015 + 0.375 in 0.5 

0.5 2 oz m a .  
0.5 0.5'c/w 
1.0 

1.5 
2.5 5 ozmax. 

1.515 x 7.3 x 1.515 + 0.375 in. 

3.5 0.25°c/w 
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The use of so l id  s t a t e  control lers  has been proposed fo r  F-111, SST, 
F-15 and Bl a i r c r a f t  with the r e su l t  tha t  several  specifications have been 
wri t ten for  these devices (Ref. 8-4, 8-6 ) and some hardware i s  available 
and being qualified.  
time frame of the space s ta t ion .  

The technology should be well developed within the 

The f a i lu re  charac te r i s t ics  a re  as follows: 

AC control lers  usually use so l id  s t a t e  thyr i s tors  ( s i l i con  controlled 
r e c t i f i e r ,  SCR) as the  control element. 
Since the  normal catastrophic f a i lu re  mode of both junctions i s  a short ,  a 
se r ies  fuse l i nk  i s  often included t h a t  opens a t  several  times the rated 
current.  This i s  essent ia l  i n  the space s ta t ion  application. Besides the 
main control  element, the control lers  contain a rather  large amount of addi- 
t iona l  c i r cu i t ry  f o r  logic ,  timing, current l imit ing,  switch drive,  and b ias .  
The f a i lu re  charac te r i s t ics  of the t o t a l  control ler  i s  highly dependent on 
t h i s  c i rcu i t ry .  It i s  doubtful i f  any presently designed control ler  would 
meet the f a i lu re  requirements of the space s ta t ion  guidance and control 
subsystem. 
t o  meet the desired character is t ics .  

DC control lers  usually use t rans is tors .  

It i s  highly probable tha t  they could be modified o r  redesigned 

The AC devices are  b i l a t e ra l ;  they w i l l  pass power from an active load 
t o  a shorted bus i f  on. The DC devices are p a r t i a l l y  b i l a t e ra l ;  they w i l l  
pass power from an energized load t o  a bus a f t e r  a breakdown threshold i s  
reached. 

8 - 2 0  
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2.4 ELECTROMECHANICAL CONTROLLER 

Electromechanical relays with demonstrated MCBF (Mean Cycles Before 
Fai lure)  of 10 mill ion cycles a t  a confidence l eve l  of 90% are  available 
(Ref. 8-7 ), but are  l imited by rated l i f e  t o  100,000 cycles or l e s s  a t  
which time they must be replaced. 
so l id  s t a t e  devices tha t  a re  capable of a mill ion o r  more operations. Since 
the design goal of the  programs developing sol id  s t a t e  control lers  i s  t o  
increase r e l i a b i l i t y  and maintainabili ty by an order of magnitude and reduce 
weight and volume by 50% (Ref. 8-8 ), t h i s  emphasis seems val id .  

The emphasis of t h i s  study has been on 
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3.0 SYSTEM ASPECTS OF POWER CONVERTER DESIGN 

3.1 INTRODUCTION 

Power converters are simply buffer c i r cu i t s  tha t  provide power with 
charac te r i s t ics  required by the load from primary power sources with char- 
ac t e r i s t i c s  imcompatible with the load. 

Good system design consis ts  of trying t o  eliminate the power converter 
by matching primary power and load charac te r i s t ics  by modifying one or the 
other o r  by providing the required conversion with the l e a s t  impact on power 
conranption, s ize  and weight, r e l i a b i l i t y ,  dol lar  cost ,  program r i s k  and 
schedule. How t o  assess the system impact of a power converter i s  discussed. 

3.2 ASSESSING THE NEED 

Almost any 'experienced power supply designer o r  system engineer can 
r e c a l l  instances of a system design where unnecessary power conversion was 
provided such as an AC t o  DC conversion followed by a DC t o  AC conversion 
or cases where the required charac te r i s t ics  were grossly over-specified. 
Eliminating unnecessary power conversion and unnecessary features on the 
necessary power converters can contribute great ly  t o  overall  system design 
improvement. 

3.3 EFFICIENCY MODELS 

Figures 3-1, 3-2, and 3-3 show s.i.mplified efficiency models. Figure 
3-1 i s  fo r  a I4c t o  DC converter providing three DC levels  from a 28 VDC 
source. 
former r e c t i f i e r  s e t  tha t  converts 1-15 VAC t o  28 VDC. 
high voltage AC t o  DC converter where the transformer is  eliminated and 
r ec t i f i ca t ion  i s  at  a higher voltage. Weight, volume and efficiency are 
d1 improved. 
overa l l  efficiency of a system, the input power, and the d is t r ibu t ion  of 
power diss ipat ion needed for  thermal design. Am important e f fec t  t o  notice 
i s  the reduction i n  efficiency as more elements are  added i n  ser ies ,  even i f  
these elements themselves a re  reasonably e f f i c i en t .  

Figure 3-2 converts t h i s  t o  an AC t o  DC converter by adding a trans- 
Figure 3-3 shows a 

The figures i l l u s t r a t e  the use of such models t o  determine the 

These ser ies  elements axe multiplying factors  and quickly reduce the 
efficiency of a system. Other losses ,  such as housekeeping c i r c u i t s  are  
added i n  a t  the appropriate point i n  the model and are  pure losses  since 
they contribute nothing t o  output power. Efficiency i s  calculated a t  
nominal input and output voltage and f u l l  rated load. The model m a y  have t o  
be calculated for  other conditions such as high l i n e  input voltage t o  deter-  
mine the maximum thermal load i n  each block. 
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Figure 3-2 AC to DC Converter 

r-------- ; - - - . 

Ea 100 5 66, 

Figure 3-3 AC to DC Converter 
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3 4 EFFICIEHCY MODEL TERS 

! 

Figure 3-4 is a p lo t  of the  equation 

Efficiency = EO Versus Eo 
X + Eo 

where Eo is the  output of the regulator  and X is a voltage i n  the range of 
one t o  four vol t s .  For switching regulators i n  the low t o  500W range and 
frequencies between 5KHz and 25KHz the  e f f ic ienc ies  seem t o  fa l l  between 
the l i n e s  determined by X = 2 t o  3 vol t s .  
l i n e ,  the designer usually didn’t  pay suf f ic ien t  a t tent ion t o  power losses  
or traded off eff ic iency fo r  same other parameter. While you might expect 
a good design t o  approach the X = 1V l i ne ,  the  1 vo l t  being the drop across 
the switching t r ans i s to r  or commutating diode, i n  pract ice  it seldom penetrates 
the X = 2V l i n e .  The losses  occur as switching losses ,  core losses ,  se r ies  
I R  drops and power required fo r  the control  and drive c i rcu i t ry .  

If it falls outside the X = 3V 

3.4.2 

Basic eff ic iency is estimated by multiplying the value obtained from 
Figure 3-4 with X between 1 and 2 vol t s  by the  following fac tor  

Minimum Input Voltage 
Nominal Input Voltage a =  

l e ,  i f  the input voltage has EL tolerance of +lo$ and -209 

Vnom - 0.2 Vnan = = 
Vnom 

the efficiency for f ive  vo l t  regulator 

(.0.75)(0.8)(100) = 605 

3.4.3 Shunt D i s s i p a t i v ~  Regul 

0.8 

would be 

€2 v is tha  
ciencg 3.8 t 
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which must be modified by an estimate of control  losses .  
shunt regulator i s  a l w a y s  l e s s  e f f i c i en t  than a ser ies  regulator or a t  best  
the  same efficiency. 

In  pract ice ,  a 

3.4.4 RFI F i l t e r  

N 100 E in  

+ Ein 
= 0.5v t o  2.071 

Within the  l i m i t s  of X there  i s  a size-weight trade-off with efficiencyo 
with the more e f f i c i en t  f i l t e r  being la rger .  

3.4.5 Marginal Test Capability 

Some computers incorporate a trouble shooting scheme i n  which the 
secondary output voltage i s  varied high and l o w  by some percentage as an a i d  
i n  locating marginal logic  c i r c u i t s .  If d iss ip  ive regulators are used, 
the  eff ic iency is  lowered by 

N = a where a i s  defined ab before. 

For example, i f  - + 5% marginal t e s t  i s  desired, a = 0.95 

3.4.6 Remote Sensing 

The need f o r  remote sensing usually indicates  a poorly designed or 
unknown dis t r ibu t ion  system. 
loss i s  only t h a t  i n  the actual  bus, if used with diss ipat ive regulators the  
maximum bus drop must be designed fo r  and i s  a lways  l o s t ,  e i t he r  i n  the bus 
or  regulator.  

If used with switching regulators,  the eff ic iency 

N = a = 0.35 fo r  8 5 drop i n  the bus. 

3.4.7 Overcurrent Protection 

Assuming t h a t  current i s  sensed by a se r i e s  r e s i s to r ,  use Figure 3-4 
with X = 1.0 9 O.5V. Losses can be lowered with the use of a current 
sensing t r a n s f o k e r  or other devices e 

3.4.8 
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3.4.9 Isolat ion of Grounds 

Ground i so l a t ion  can be obtained for  no efficiency loss i f  transformers 
are needed anyway. If not, the i so l a t ion  losses  must be considered. For 
an unregulated DC t o  DC converter, they can be estimated from Figure 3-4, 
using X = 1 v o l t  fo r  each series switching t r ans i s to r  oti the primary side,  
multiplying by the transformer efficiency, and using X = 1 vol t  f o r  each 
se r i e s  rect i fying diode on the secondary side.  
p a r a l l e l  inverter with center tapped secondary and a 96% e f f i c i en t  transformer 
would be N = (0.965)(0.96)(0.965) 100 = 89% ef f i c i en t .  A bridge inverter  
with a bridge output and the same transformer would be 
100 = 82% e f f i c i en t .  

For example, a 28v t o  28V 

M = (0.93)(0.96)(0.93) 

3 a 4.10 Transformers 

Transformer eff ic iencies  can be estimated from the curves i n  reference 8-10 
Figure 3-5 i n  the reference gives s i z e  versus regulation and temperature r i s e  
for 60 Hz transformers. Figure 3-6 i s  for  400 Hz transformers. 

A conservative estimate of power losses can be made by assuming the 
copper losses equal the regulationp and core losses equal the copper losses.  
A transformer with 4% regulation would be 92% e f f i c i en t .  
transformers i n  the 5KKz t o  25KHz range can be estimated as about half those 
of a 400 Hz transformer. 

Power losses f o r  

3.4. bl Input Voltage Tolerance 

For input voltage tolerances of 2 10% or less, diss ipat ive regulators 
axe usually preferred because they provide high qual i ty  power with no EMI 
problems and at reasonable efficiency, When the voltage range exceeds t h i s ,  
efficiency considerations m a k e  switching regulators more and more a t t r ac t ive  
i n  s p i t e  of t h e i r  EM? problems and higher output r ipple .  
chosen, suff ic ient  information has been provided t o  estimate the efficiency. 

Whichever type i s  
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3.5 SIZE ESTIMATING 

3.5.1 Thermal Constraint 

The volume of a power converter should be ccmpatible w i t k ,  i t s  efficiency, 
a 65% e f f i c i en t  power converter shoul5 cccupy 35% cf the -icLUmC cf  t h e  i . e  

package containing the converter and i t s  h a d .  
thermal design f o r  a power ccnverter i s  usually be t t e r  than for  mcst lcacis, 
it often receives the cooling las t  which negates t h i s  aacantage. 

While it i s  t rue  tha t  t t e  

3.5.2 Output Power Per Cubic Inch Figure cf Merit 

Often a f igure of merit  can be used as a guideline t c  estinlate s ize .  
One such f igure cf  merit i s  output power per cubic inch. Tabif 3-1 l i s t s  
t h i s  f igure of merit fo r  several  computer power supplies dcns c7er a perio3. 
of e ight  years by d i f fe ren t  designers i n  the same company. A i i  w e  DC t c  
Dc converters cjperating at  20KHz wizh output pcwer ranges of 25 t c  350 watts. 
A l l  are  conduction cooled with a 71 c upper heat sink l i m i t  except tke l a s t  
whose heat sink i s  l e s s  than 4Ooc. 

A reasonable f igure of merit f o r  estimating s ize  fo r  this apprcach 
seems t o  be one watt output power per cubic inch. This sllcws f c r  suf f ic ien t  
component derating and working room t o  a l l c w  f o r  good workmanstip ani  inspec- 
t ion ,  all of which are  necessary f o r  achieving a r e l i ab le  design. 

3.5.3 Component Density 

Reliable regulatcr design requires r e s i s t c r s  i n  t w c  out cf t h e e  t r ans i s t c r  
leads and several  protect ion diodes. 
p a r t s  per regulator even when I C  regulators with bccster t rans is tors  are  used. 
If many low powered output leve ls  a re  required, component density may rcq1h-e 
more volume than the  other f igure cf merits indicate .  

This requires abcut twenty t c  zh i r ty  

3 - 5.4 Redundancy 

Brute force dual redundancy would be expected t o  3ouble the  voiume, 
however, i f  heat sinking can be shared, substant ia l  savings may be made i n  
required volume a 

3.5.5 Transformers 

"ransformer s i ze  can be estimated from IT 5 of Reference !!eiO. 

3.5.6 Rectifier and F i l t e r s  

-accurate answer. 

reduction, 



h w  cost denonstrator 
Adjustolzle outputs 
Beven l e v e l s  including 2GOV 
for l i x i e s .  

93 Production - Some ProducibiLity 
Probleci due to part denw3.t-y 
Six l e v e l s  

Productdon - Some Producihility 
bl-ems due to part density 

Five BeveBs 

Prbduction - Some 
moblems due Lo part density 
ur Ieve l s  
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emnce - Seven 
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3.6 WEIGHT 

A good ru l e  of thumb f o r  power l eve l s  l e s s  than 500 watts i s  t o  assume 
the power supply has the same density as aluminum - 0.1 lbs/cubic inch. 
i s  perfect  f o r  the aluminum heat sinking and chassis and a good average for  
the heavier copper, iron, and tantalum and the l i g h t e r  p l a s t i c s  and, open a i r  
spaces. If it gives a heavier weight than 0.1 l b .  per watt of output power, 
t he  la t ter  i s  usually a b e t t e r  estimate. 

This 

3.7 RELIABILITY 

Power converters have a poor reputation f o r  r e l i a b i l i t y  but they can 
be designed so t h a t  they contribute l e s s  than one out of every t e n  system 
fa i lu re s .  Re l i ab i l i t y  i s  achieved by proper application and derating of 
components (what are  the forward and  reverse secondary breakdown traces? - 
what's the r ipp le  current through t h a t  capacitor? - does tha t  include the 
load?) ,  adequate protection components ( i . e . ,  are  all source t o  source or 
source t o  ground paths through semi-conductor interrupted with discrete  
r e s i s t o r s ?  - were blocking and bypass diodes used, e t c ? ) ,  good thermal 
design (including minimizing e f f ec t s  of thermal expansion and contraction) , 
and good mechanical design (adequate clearances during vibration and shock 
as well as s t a t i c a l l y ,  not t rying t o  hold down capacitors with t h e i r  insulating 
sleeves during vibration, no burrs under t h a t  mica washer, were the dimensions 
of t h a t  solder pad designed or guessed a t ? ) .  Also, good follow-up with a b i l i t y  
t o  change the design t o  eliminate f a i l u r e  modes i s  essent ia l .  The usual 
addition of f a i l u r e  r a t e s  of components has l i t t l e  t o  do with actual  power 
converter f a i l u r e  r a t e s .  Another factor  often overlooked i s  designing the  
converter so it can be produced with good workmanship, inspected (can you 
see every solder j o i n t  c l ea r ly  from several  angles 
out goofing up the or iginal  workmanship * 

e tc .  ) and reworked with- 



3.8 INTEXVACE PRECAUTIONS 

Often, power converters are designed without proper consideration of 
the actual  system loads or source character is t ics  they see. 
problems are discussed. 

Some common 

3.8.1 Entrainment of Switching Regulators with Switching Loads 

If the frequency of a switching regulator i s  allowed t o  vary and it 
drives a load t h a t  i s  a l s o  switching at  some frequency (i .e. ,  a core memory 
or 1/0 bus under software control)  and the load frequency approaches t h a t  of 
the regulator switching frequency, the regulator can lock i n  on the load 
frequency. 
some reasonable l eve l  t o  an unacceptable l eve l  ( i . e .  
+lZVI)C may go t o  8 vo l t s  p-p). This can cause havoc with the load and f a i l  
power converter components such as output capacitors. The effect i s  ampli- 
tude sensi t ive,  a 100 ma switching load may not entrain while a 200 m a  load 
may. 
designs have t h i s  character is t ic .  

The e f f ec t  i s  t h a t  the peak-to-peak output r ipple  goes from 
100 rmr p-p r ipp le  on 

It i s  interest ing t o  note tha t  most published switching regulator 

3.8.2 More man One Stable Operating Point 

Figure 3-5 shows the block diagram of a pre-regulator, with current 
l imiting, driving a switching regulator.  The voltage versus current diagram 
a t  the interface i s  shown f o r  both blocks. The two points of intersect ion 
are the two s table  operating points.  One i s  the desired one and the other 
is  undesired. 
i n to  the undesired mode. 

h3en the  system i s  first energized, it wilfcome up and l a t ch  

3 8.3 Voltage Overshoot 

Figure 3-6 shows the LC network used on most switching regulators.  
a load has established a current i n  the inductor and the load i s  abruptly 
removed, a l l  the energy stored as 

the capacitor as E = - v2c 

If 

12L 
2 

i n  the inductor i s  dumped i n t o  E = -  

energy and the output voltage i s  2 

V = I -  = IZ0 C 

Some published designs of switching regulators give an 80 v o l t  overshoot on 
a 5 vo l t  regulator when the load goes from rated load t o  no load. The 
s i tua t ion  i s  compounded when the inductor current has been established by 
a short  c i r c u i t  on the output t ha t  suddenly burns open. Every I C  i n  some 
large scale computers has been burned out t h i s  way. 

8-32. 
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1.0 DATA TRANSMISSION MEDIUM DESIGN 

1.1 GENERAL 

1.1.1 Design Considerations 

The design considerations for  the data  t ransmiss ion  s y s t e m  were 
guided by fac tors  such a s  reliabil i ty,  cos t ,  noise environment,  e tc .  
Some of these considerations a r e  discussed in  subsequent paragraphs  
as well  a s  the descr ipt ions of the Dr iver /Rece iver  mechanizations,  
data  link, and equipment in te r faces .  

1.1.2 Data F o r m a t  

The information exchange over  the data  l ink consis ts  of data ,  house- 
keeping and spa re  bi ts  and employs the p rocesses  of multiplexing, t iming, 
s torage  and switching. 
employs bi-phase (Manchester)  encoded data to allow AC coupling and 
enhance noise immunity. 

The data exchange between ma jo r  s y s t e m  elements  

Long paths  (100 feet  is considered long) a r e  handled by an AG coupled 
( t ransformer)  s y s t e m  which fea tures  high noise rejection, and DG isolation. 
P a r t y  l ine,  half-duplex operation is employed where a l l  r ece ive r s  a r e  
active but only one t r ansmi t t e r  is using the line f o r  any given interval .  
Two-way t ransmiss ion  i s  thereby established by t ime sharing the line. 

1.1.3 Noise Environment 

The noise environment of the spacecraf t  is one of the ma jo r  considera-  
t ions affecting the design of the system. 
s y s t e m  inside the spacecraf t  constitute in te r fe rence  in  the f o r m  of un- 
des i rab le  e lec t r ica l  signals induced f rom sources  which may be e i ther  
ex terna l  o r  in te rna l  to the system. Random noise and impulsive noise 
a r e  two categories .  
pa ra l l e l  e l ec t r i  ca l  c i rcui ts .  

Noise within the t ransmiss ion  

In addition, t he re  is c ros s - t a lk  running f r o m  other 

At this t ime ve ry  little i s  known about e lec t r ica l  noise conditions 
inside the spacecraf t ,  par t icu lar ly  sho r t - t e rm s ta t i s t ica l  data.  Some 
fundamental assumptions have been made during studies and accordingly,  
F igure  1-1 has  been drawn for  a typical environment.  It is p resumed  
that  the noise measu red  on a line spanned through the spacecraf t  might 
have magnitudes of noise power spec t ra l  density lying within the 
darkened a r e a  of the figure.  

F o r  purposes  lculations and m e c  nization, a noise power 
den5i .k~ of -130 db ely that the -130 dbw/Hz 
s ignal  may be in 
bal  ws an adequate deai 
for 

a well shielded- 

9-1 
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1.1.4 Bi -Phase  Modulation 

Bi-phase (Manchester)  encoding is employed for  the AC coupled signals.  
Figure 1-2 shows var ious encoding techniques a s  well a s  the one employed. 
Bi-phase Manchester  was chosen because it is simple to  genera te  and de-  
code by using the clock s ignals ,  

Baseband bi -phase encoded data fea tures  k l e r e n t  signal-to-noise 
enhancement over  nonsynchronous encodings o r  t ransmiss ion  of basic  
da ta  formats  such a s  N R Z .  Moreover ,  encoding to bi-phase allows the 
channel band t o  be located above the high noise environment band which 
is found on all types of modern  vehicles.  T e s t s  have shown (as depicted 
i n  Figure 1-1) that  the interfer ing noise on a t ransmiss ion  path within a 
vehicle inc reases  inverse ly  with frequency at 40 db/decade, and flattens 
out below 10 KHz. The knee of the noise curve is discernible at or near  
1 MWz. Therefore ,  the operating band for  the nominal 1.0 MHz bi-phase 
encoded data  r a t e  is located in  a l e s s  hosti le frequency spectrum. 

Bi-phase modulation a l so  requi res  l e s s  power on the t ransmiss ion  
l ine,  for  a given e r r o r  r a t e ,  over  other s y s t e m s  with data formats  
utilizing low frequency o r  d i rec t  cur ren t  band p a s s  response.  
encoded s ignals  may be isolated f r o m  the t ransmiss ion  line by t r ans -  
f o r m e r  coupling s ince no DC o r  low frequency components need be passed.  
Bi  -phase encoding /decoding can be digitally mechanized, and since the 
use  of t r ans fo rmer  isolation is allowed, super ior  common-mode noise 
re ject ion resu l t s .  

Bi-phase 

1.1. 5 Transmiss ion  Power  Schedule 

The power required on the line i s  dependent on var ious fac tors  of 
environmental  conditions, coupling lo s ses ,  noise margins ,  bandwidth, 
e tc ,  They a r e  re la ted by the following equation: 

a rg ins  t Losses  
where;  

S = Signal power on line 
N o  = Noise power density 

= Bandwidth required 
E = Energy cont ra  

The noise power density is 
a medium noisy s y s t e m  at 1 
digit  sa te  because of bi-phase e 

assumed at t l6 

9-3 
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1.1. 5 (continued) 

connectors ,  da ta  link, etc. Worst  ca se  cable losse  a r e  assumed to  
be  4-2 dB and connector attenuation lo s ses  t3 .2  dB (0.1 dB t imes  up t o  32 
connectors) .  
The total  r equ i r ed  power on l ine then is as follows: 

Equipment degradation l o s s e s  a r e  found in  the d r i v e r s / r e c e i v e r s ,  

The d r i v e r / r e c e i v e r  and coupler l o s ses  a r e  set at M . 8  dB. 

S = -130 4- 63 t 17 t 16 t 10 = -14 dBw 

S = -14 dBw t 30 dBm/dBw = t16 dBm 
This  is equivalent t o  about 40 m watts power requi red  on l ine.  

1.2 MECHANIZATION 

1.2.1 Introduction 

The mechanization of the da ta  t ransmiss ion  sys t em is t r ea t ed  i n  two 
p a r t s  including the data link and AC coupled sys tems.  

1 .2 .2  Data Link 

The noise spec t rum influences the design of a data  t ransmiss ion  
s y s t e m  concerning frequency and band allocation as well  as the sys t em 
of modulation. Since c ros s t a lk  is principally an inductive effect ,  the 
magnitude of this noise p rob lem inc reases  with the length of adjacent 
e lec t r ica l  c i rcu i t s ,  the f ie ld-s t rength of the c ros s t a lk  energy,  and the 
frequency of the t ransmi t ted  signal. 
i n  carrier sys t ems  since high frequencies  are used, and induced E 
a function of frequency, 

Cross ta lk  interference is g r e a t e r  

The c ross t a lk  problem is  g rea t e s t  for long wire  c i rcu i t s  consisting 
of ,several  adjacent pa i red  conductors,  s ince the re  ex is t s  a long path of 
pa ra l l e l  electrical circuits, unless  t he re  is shielding between them. 
Shielding methods and isolation techniques for  e lec t r ica l  conductors 
great ly  reduce the problem of crosstalk.  

A good cable  is a two-conductor twisted and balanced t ransmiss ion  
l ine with an overa l l  shield around both conductors.  
balanced s ignal  car ry ing  wi re s  provides  
re ject ion thereby  protecting against  a 10 

capacit ive field5 

Twisting the two 
common mode noise 
quency magnetic noise field. 

hen used proper ly  it also provides  protect ion against  ground loops and 

he selected t ransmiss ion  cable has maur;imum impedance of about 
s, is well-balanced, has twin-twisted and shielded conductors,  
mall and lightweight. Both t e rmina l  ende of the cable a r e  loaded 

i n  the cables '  cha rac t e r i s t i c  impedance resultin 
loads are center- tapped and grounded for noise 



C70 -171/ 3 01 

1.2.2 (continued) - good balance maintained for dra in ,  resu l t s  i n  
minimal  susceptance and emission of EM1 for  the t ransmiss ion  cable. 
Moreover,  all data  t r ansmi t / r ece ive  equipments a r e  differential high 
impedance bridging taps along the cable. Minimum bridged loading i s  
maintained for  each tapped element,  thereby,  the cable re ta ins  good 
drair, balance and low VSWR as equipments a r e  added o r  reduced from 
the l ine.  

The attenuation of the cable i s  l e s s  than l db/lOO' a t  1 Mhz and the 
propogation delay is l e s s  than 2 nanoseconds /foot. 

1 - 2 . 3  AC Coupled Trsnsmit/Weceive (Figure 1-3) 

1.2.3.1 Transmi t te r  - The t r ansmi t t e r  i s  a signal cur ren t  source ,  which 
exhibits a 1500 o h m  o r  g rea t e r  bridging load a t  a. t ransmiss ion  cable tap. 
A well-balanced, isolation t r ans fo rmer  couples the t ransmi t te r  output 
stage to  the cable tap and bridging is maintained for ei ther  the operate  or 
inhibit mode of the t ransmi t te r .  
the t r ans fo rmer ,  feeding the line, to have some additional physical  
bridging r e s i s t o r s  placed in  s e r i e s  with the signal path without deleterious 
signal loss .  Upon catastr iphic  fa i lure  of any one t ransmi t te r  output 
c i rcu i t ,  signal paths for  the remaining data communication elements  a r e  
not ser iously impaired.  

Curren t  dr ive allows the secondary of 

The t ransmi t te r  output stage is an IC consisting of a balanced dif- 
Curren t  source ferent ia l  t r ans i s to r  pa is ,  fed by a DC cur ren t  source.  

Differential  bi-phase data i s  AC coupled 
to  the t rans is tor  pa i r  whose output col lectors  couple the line and s e r i e s  
bridging r e s i s to r s  via  a wide -band, well-balanced, isolation t r ans fo rmer .  
The t ransmiss ion  is inhibited by placing a data level  low to the cur ren t  
source  section of the IC. High bridgixqg impedance is derived for  operate 
o r  inhibit mode, Bi-phase data is differentially,  AC coupled to two data 
inputs e 

capable of 1 , O  MHz bi-phase encoded data r a t e s  and 4 6  dBm into a 40 ohm 
re oistive load. 

. biasing is derived w-ithin the IC. 

Differential data  coupling and inhibiting eliminates unwanted 
, t ransients  coupling to  the t ransmiss ion  cable. The t ransmi t te r  is  

1.2.3.2 Receiver  - The receive elements  a r e  bridged f r o m  a line tap,  
using mechanization s imi l a r  to the t ransmi t te r .  The receive isolation 
t r ans fo rmer  which features  high common mode noise rejection feeds a 
signal band-pass f i l t e r .  
which is not common mode. 
significant bi -phase spectural  components along with a delay .dietortion 
charac te r i s t ic  sufficiently low to cause a Iow data e r r o r  r a t e i n  the vehicle 
noise environment. 

This element  re jec ts  the out-of-band noise 
The f i l t e r  has  suf€icient pas s  to include the 

9-6 
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1.2.3.2 (continued) 

The filter output is  connected to the input of an IC, which has a high 
impedance input differential transistor pair fed by a current source. 
Signal amplification i s  performed and then it is converted to the data 
level which appears at the IC output, 

The receiver is capable of responding to 30 mv levels (crest-to- 
crest)  from a balanced signal source and provide a bi-phase encoded 
data rate of 1.0 MHz. The fan out i s  one gate. 
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